Designing BiblioText:
An Experiment in User Interface Design

Michael L. Van De Vanter!

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

October 24, 1988
Report No. 88/454

PIPER Working Paper 88-1

ABSTRACT

Principled approaches to the design of user interfaces are typically
unsubstantiated by practical experience, or are validated only through
laboratory experiments with toy programs. This experiment applies
several theoretically motivated approaches to the user interface of an
existing, practical program of moderate complexity; these approaches
include conceptual models, task based design, the use of metaphor, direct
manipulation, and empirical evaluation. Although necessarily informal,
the experiment yields insight into the utility of these approaches, as well
as observations on more general themes such as specialization versus gen-
erality, multiple models and their limits, the problem of context, and the
elusiveness of consistency as a design goal.

1 Sponsored by the Defense Advanced Research Projects Agency (DoD), monitored by Space and Naval Warfare Sys-
tems Command under Contract NO0039-88-C-0292, by IBM under IBM Research Contract No. 564516, and by the State of
California MICRO program. Michael L. Van De Vanter was supported in part by a MICRO fellowship.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
24 OCT 1988 2. REPORT TYPE 00-00-1988 to 00-00-1988
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Designing BiblioText: An Experiment in User Interface Design £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of California at Berkeley,Department of Electrical REPORT NUMBER
Engineering and Computer Sciences,Berkeley,CA,94720

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Principled approachesto the design of user interfaces aretypically unsubstantiated by practical
experience, or are validated only through laboratory experimentswith toy programs. This experiment
applies several theoretically motivated approachesto the user interface of an existing, practical program of
moder ate complexity; these approachesinclude conceptual models, task based design, the use of metaphor,
direct manipulation, and empirical evaluation. Although necessarily informal, the experiment yields insight
into the utility of these approaches, as well as observations on mor e general themes such as specialization
versus generality, multiple models and their limits, the problem of context, and the elusiveness of
consistency as a design goal.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 71
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

-

Table of Contents

L INErOAUCHION ...ttt see st st e sra e sane e snae sanesasa e annae 1
2. Some Background ...t et 2
2.1 The FirSt PIOTOLYPE ..eeeciiiiiericetiintteceenntentcenteesetsensesetescsaesssssssessssesssssssssosssasses 2
2.2 EVOIULION ociiiiiirieeeierrenreeenineeenrtetentts st cesaecssastasssse sesassessanssosssssssssssnsaresosanssesnans 4
2.3 Thoughts on Program Design and EvOlution ..., 6
3. Descriptive MOdEISccooiiiiiiniiniiiniienininrtceteneste st sesesesese s csssssesanesnsesnaes 6
3.1 A Full SPeCifiCationcccceiviieriiiiiiicniiniiioneeinesitcssrssssrsssnessasssssnssssessssessnseessesenns 7
3.2 A Conceptual Modelc..cooviivciiiiiiintinitnniin e e s ssassaaes 9
3.3 State and VISIDIILY ..cccceriiiiniirniiniintnciientinte et tiiecsns et saae s e s e sanes 12
3.4 Command FOMAtIONcccciieriirenieminieeereinienteensecsseesssteesaees sissaessasas sssssessssnes 14
3.5 Thoughts on Model Buildingccccccevevinniinininininiicneci s sneenes 16
4. Theoretical EvalUationsccoveiirniionniiniininniencent e seeessnesreesraessassne 18
4.1 INTUIHOM eiveiieiieieieeieereieceeeeseeesresreeee e et e sese e e et aesnaesassssnessessosasssssssnssassansenssnas 19
4.2 TaSK ANALYSIS .eeeiicrirerrreerirrerensreeiererres s tesne e saesssuaeassraesosete s seae sesstssssbasessasssssnnses sas 19
4.3 MEIAPNOT ..ciiiiiiiieeenreernsetreeeeeseee s e e ce e eeeesene e saesane et sneseeasaassrsaesassesessassssssasaesns 23
4.4 Direct Manipulationccccceccieriiiniiininniniieiitentcenteseresseeesseesaessenesessessensosnseas 25
4.5 ViSUQl CONSISIENCY .iiiiiiieiiiiiiiiirrereieeeeaeeteeeeteeeserteees e ameeteessnnetesesaasasaeesesasnresens 27
4.6 Thoughts on Theoretical Evaluationsc.c.cccoeiieeiiiiiiiiiniccniie e e eeeneeneenee 29
5. REESIZI ...ttt sttt e et se et e et e et et e e 31
5.1 Cosmetics and Visual CONSISIENCYccocirreiiriirieieneenienierniceseeeseeessreesseeseneennee 31
5.2 Command FOMMAtIONc.ccccoviiiriiertinieiecrecerrte e et eestcecttesereceresssseeasaasessesseeses 35
5.3 THE VIEBWET ..iiiiiiiiiiiieiiniteenieteerteesete et ceersecesr st e seee e e sesesane e sesecesmneeresnesesiaensennn 38
5.4 The Editing Model ...ttt eeee e sreeee e e s e e e e 39
5.5 Other Design ISSUES ..c.cieciiiiiiiiiiiiiiitenie ittt et et care et seae e essaeeae 40
5.6 Thoughts on Design COmMPIEXItYccoiiiiiiiiiiiienminiiiiec e 41
6. An Empirical Evaluationccoooiiiiiiiniieeece e 41
6.1 The StUAY .eeiiiiieiiieee ettt e s s 42
6.2 THE SUDJECLS .eiieeiiiieeie ettt ettt st e e e seaeessneesaneesasasns 42
6.3 Personal Working CONTEXLScicercieruiieiieeenieeeneeecrierecenreeeenraeessreeeeessreesssssessans 43
6.4 SunView Standards and TOOISccccoiiiiiiiiiiiircrr e 44
6.5 TRE VIEWET ..iiiiiiiiiiiiecieeeerteeeee e st eeeireeeseeeeese e s e e e e e ee s eaesnraesaneasanaabens srasassrnes 47
6.6 FUNCHONAILY .iciiiiiiiiiiieieeeeieceeiien st eeeeneceneeeeeseesssntessieas srssae s sassossasorsasesesnsesssrnns 47

Designing BiblioText Table of Contents

6.7 General REACHION ...cccuiiiiiieieciiieeictiecirrieseieteeesraeesssteesestsassssesesssasassssesssssssessseesonns 50
6.8 Thoughts On USabIlitycccevciiriernieniieneinnterierreeseneiesnesraesseeseaessasseenssasssasssassans 50
7. The New Interface Reconsideredccocoeviiiniecieciiiiiciicieeeeeere e 51
7.1 Cosmetics and Visual CONSISIENCYcccirviieerirnruearieenseesiueesssesssresssesssessssassaseans

7.2 Command FOIMAIONcciiiiiieieiiieciieieciieecitieceeereeeitesessaseeesasasersssssessesssssssaesenns 53
7.3 The VIEWET ...eiciceiiiiieciieriierineeecaesssaessatsassasssesasssassessssssassesssessssssssssanssessseasssnaene 54
7.4 The Editing MOAEL ...coiniiiiiiieieitieerir et cetee e seeseessenes e e s e essa e e aeesee s saassnneeen 56
7.5 Other Design ISSUESccceeeviiiiiieneeiieiiieeiieecceeiieeesteesteesstesssessssssesassssssssssenssnsens 56
8. CONCIUSIONSooiiviiiieriieiieitee et eee e et ecteeraestestae st essrae s ae s s s s asenssesssesnsersssnssenses 56
8.1 Improvements e e e e st e s e e s s s s b e e 57
B2 LLESSOMS woeiieiiiirteieeeiicieteeesictteeeesatieaeeeessessasesssaeaesastesassansnsssnsssassnseesesssnsasasessnnsasans 57
8.3 Themes ...ceceevecnrereecicnraennn. rrereeenaeans ceeverenne creren eeeteeeieeeersseesssseesssraeesseseesnteneenrres 60
8.4 Final Thoughtscccciiiiiiiniiiiiriinicireeseeerccaneenne creeesreeeenae retereeteeneaeanenne ceecasenee 62
9. AcCKkNOWIEdZEemMENLScooiiimiiiieriiarreienieteesirressete e seeseessesessssaassssasaessssnnenes 62
10. Referencesccviiviieiriciieneneesnesiennienens eeeteeeerieeeetteeesataeeaeteesaaaaeeseaanannrarans 63
Appendix A. Original Task ANAlYSISccccceevieiiinriiniiniienieneeneenaeeseesreesraesssessens 65

-11-

1. Introduction

The research literature on human-computer interaction is filled with theoretically
motivated approaches to the design of user interfaces. Unfortunately, these fall too often
into one of two categories. Contributions in the first group present principles, supported
by psychological theories and persuasive arguments; these are never based on experi-
mental evidence, and are seldom supported by experience with working, practical sys-
tems. Fred Brooks calls contributions in this category rules-of-thumb? [Bro88].

Contributions in the second category support proposed general principles with con-
trolled experiments. Fred Brooks would call these contributions ﬁndings3. Unfor-
tunately the supporting experiments take place typically in laboratory settings, with naive
users and with artificially small (toy) programs. This necessarily bounds rather narrowly
the relevance of the results to the problems of larger systems, despite occasional claims
to the contrary.

This paper reports an experiment that takes the middle ground, what Fred Brooks
would call observations*. Although less formal than laboratory results, the results of this
experiment are considerably more relevant to the problems faced by those who design
user interfaces for real systems.

The experiment applies several theoretically motivated approaches to the user inter-
face of an existing, practical program of moderate complexity. These approaches include
conceptual models, task based design, the use of metaphor, direct manipulation, and
empirical evaluation. One result of the experiment is an evaluation of the benefit of the
different approaches.

Other results of the experiment are more general observations, resulting from the
meeting of theory and practice. General themes that emerge from the experiment include
tension between specialization and generality, multiple models and their limits, the prob-
lem of context, and the elusiveness of consistency as a design goal.

The experiment took place in three phases:

e Phase I. Evaluate the current user interface of an existing program, using a variety of
theoretically motivated approaches (reported in sections 3 and 4).

e Phase II. Redesign the user interface, based on suggestions arising from Phase I
(reported in section 5).

e Phase IIl. Evaluate empirically the resulting interface, and judge the benefit of the
suggested improvements (reported in sections 6 and 7).

The report begins with an introduction to BiblioText [Van88], the experimental sub-
ject drawn from the universe of programs (section 2 ‘‘Some Background’’). BiblioText
is an interactive, window- and mouse-based program for browsing collections of notes,
papers, and bibliographic reference data. It is a byproduct of ongoing research on the
design of personal information management tools and on issues in user interface design.

2 *,.. generalizations, even those unsupported by testing over the whole domain of generalization, believed by the investigators willing

to attach their names to them.”’

3 ... those results properly established by soundly-designed experiments, and stated in terms of the domain for which generalization is
valid.”

4 ‘... repons of facts of real user-behavior, even those observed in under-controlled, limited sample experiences.”’

Designing BiblioText 1. Introduction

This research is part of the PIPER projects at UC Berkeley. Section 2 describes
BiblioText’s evolution from prototype through version 3.3, its form at the beginning of
this project. The report refers to this version as the old interface.

The first phase of the experiment begins with an evaluation of the old interface (sec-
tion 3 ‘‘Descriptive Models’’). This section presents, among other methodical descrip-
tions, a newly developed conceptual model for its operation. The results of section 3
provide the basis for the evaluation of the old interface at higher levels of abstraction
(section 4 ‘“Theoretical Evaluations’’). These evaluations draw on approaches to inter-
face suggested by the research literature on user interface design, including task-based
design, conceptual models, metaphor, and direct manipulation. The analysis based on
each approach suggests potential improvements to BiblioText’s design.

The second phase of the experiment redesigns the user interface for BiblioText (sec-
tion 5 “‘Redesign’’), based on suggestions for improvement originating in the first phase.
Section 5 discusses some of the conflicts and tradeoffs involved in resolving the various
suggestions. Many of the suggested changes were made, producing BiblioText version
3.4, referred to as the new interface.

The third phase of the experiment begins with an evaluation of the new interface,
based on two sessions during which new users were introduced to the program (section 6
‘““An Empirical Evaluation’’). This section summarizes those results and discusses
apparent trouble spots in the interface, some that had been predicted and some that had
not. The third phase continues by using these empirical results to judge the changes
made in the new interface (section 7 ‘‘The New Interface Reconsidered’’). The discus-
sion in section 7 leads to further suggestions for improvements to the BiblioText inter-
face.

Most sections conclude with a few thoughts and insights that resulted from that step
of the experiment. The final section of the report (section 8 ‘‘Conclusions’’) summarizes
these specific results and considers some general themes that arose throughout the experi-
ment.

2. Some Background

BiblioText is window- and mouse-based program for browsing bibliographic data
and related notes [Van88]. It is intended for a working environment characterized by
indexed bibliographic data in bib, refer, or tib format, along with online documents con-
taining imprecise citations that point into the database.

At the time this experiment began, BiblioText had evolved from an early prototype
into a working, practical program. It had been in daily use for over a year. This section
reviews a bit of BiblioText’s history, establishing some of the context for the experiment.

2.1. The First Prototype

The BiblioText prototype emerged from a small project in user interface design.
The goal of that project was to explore the window/mouse environment of the worksta-
tions that were beginning to appear. The general approach was to port into the
window/mouse paradigm the functionality of some existing batch programs, and to
examine the success and implications of the shift.

_2.

Designing BiblioText 2. Some Background

The Task Domain

The domain of the project derived from my interest in tools for professionals, work-
ing alone or in small groups, who manage and selectively share personal information.
This information includes bibliographic references, on-line documents, personal notes,
and their mutual interconnections.

I began with a look at the task domain, describing a prototypical working environ-
ment and listing typical tasks in that environment. The analysis (summarized in appen-
dix A, ‘‘Original Task Analysis’’) discusses how a person might accomplish each task in
the absence of any automated tools. This analysis was the basis for the prototype design
(see below) and appears again during part of the experiment described in this report (sec-
tion 4.2 *‘Task Analysis™’).

The Functional Design

In a second look at the task analysis, I examined how each task might be partially
automated using existing (batch-oriented) software for document preparation in the
UNIX? environment. That environment includes text editors (vi [Joy79] and emacs
[Sta81]), a typesetting program (rroff [Oss76]), and a suite of tools (bib [Bul82]) that
specifically addresses both the maintenance of bibliographic data as well as the produc-
tion of citations and references for inclusion in troff documents.

This second analysis revealed a niche in which an interactive program could be of
assistance, and suggested the functional design of an interactive browser for biblio-
graphic references and documents. The functional design had five major components:
collect references (by keyword lookup or by document preview), display the current col-
lection, store the collection, manipulate the collection, and display useful messages. That
design, supplemented by a few pages of detail, was the only formal account of
BiblioText’s behavior until the first phase of the experiment described in this report (sec-
tion 3.2 ‘‘A Conceptual Model’’).

Design Constraints

The functional design left considerable latitude for the detailed design and construc-
tion of the prototype. The following constraints affected the development of the proto-
type at least much as the functional design.

e Delivery Deadline. Little time was available to produce a working prototype.

e Existing Tools and Data. The browser had to share data with existing tools, notably
bib.

e Programming Support. The prototype was implemented on a Sun Workstation®. This
choice maintained compatibility with the existing UNIX environment, but demanded

reliance on release 1.1 of SunView software libraries [SSS84]. The quality of the
early SunView release’ imposed serious constraints on the quality of the prototype.

$ UNIX is a registered trademark of AT&T Bell Laboratories in the USA and other countries.
6 Sun Workstation and SunView are Trademarks of Sun Microsystems, Inc.
7 Early releases of SunView were called SunWindows. Many of SunView’s limitations disappeared with the later releases, but some

are inherent.

ey

Designing BiblioText 2. Some Background

Major Design Decisions

Given the constraints of the project and the available tools, several major design
decisions emerged.

e Represent bibliographic data in bib raw format. This made available a large pool of
data and potential users. It had the further advantage that existing software could be
adapted for use in the prototype. It had the disadvantage that constructing bib indexes
is computationally expensive; hence the following decision.

e Only allow the browser to read bibliographic data. The incremental maintenance of
index structures is a formidable database problem. This did not prevent, however,
changes to documents from within the browser (to the extent that indexes remained
valid).

e Undertake no other major software modifications. Time did not permit integration
with text editors, any elaborate low-level programming in SunView, or modifications
to the basic algorithms in bib programs for indexing, retrieval, and the like.

e Add features as quickly and cheaply as possible; rework the interface later for usabil-
ity. Time was short, and the project was an exploration, both of bib functionality and
of the interactive programming paradigm. Experience suggests that commercial
workstation software is often (if implicitly) developed this way t0oS.

Problems with the Prototype

Like most prototypes, the first BiblioText was unsuited to real use. Many items in
the functional design, including some of the most interesting, were left for “‘further
work.”” Implementation shortcuts caused the prototype to run unacceptably slowly.
Finally, the user interface was hopelessly confusing. The control panel contained a
bewildering array of objects for poking and typing into; they amounted to little more than
““forms’’ for UNIX command line options inherited from batch programs. Many were
arcane, even beyond the expertise of most bib users. The project report included a sketch
of a better user interface, but it relied on software support not yet available in SunView.

2.2. Evolution

In spite of its limitations, the prototype demonstrated the potential utility of the
browser. During the year and a half between construction of the prototype and the exper-
iment described in this report, I developed and used BiblioText, both as a personal tool
and as a testbed for minor experiments with user interface design.

Efforts to improve the browser were sporadic, responding to a variety of motiva-
tions. First, as I used the program, I began to understand which functions and which
parts of the user interface (assembled originally by the ‘‘kitchen sink’” method) were
important. Second, as the browser matured, I gradually changed my personal data and
work habits to take advantage of it. Finally, several successive releases of the SunView
window system changed the implementation environment considerably, in many cases

8 Like many other projects, the anticipated ‘‘rework’’ did not happen, other than evolutionary change (until the experiment described in
this report).

Designing BiblioText 2. Some Background

presenting further opportunities for improvement.

The rest of this section describes these changes under the three headings: internals,
functionality, and user interface. Unfortunately, experience showed that this separation
is artificial. More often than not, a change of one kind precipitated changes of other
kinds.

Internal Changes

The most urgent internal changes produced better internal data structures and incre-
mental algorithms; these gradually replaced the background batch jobs used by the proto-
type. Internal data structures and algorithms continued to evolve in response to later
functional changes. In several cases, new SunView releases demanded restructuring just
to keep the program working.

Functional Changes

I gradually completed the functionality sketched in the original design, but only as I
needed it. Some major functions changed gradually, as their roles in the new incremental
setting became clear. For example, it turned out that bibliographic references in
BiblioText’s viewer need not be formatted subject to numerous options (in the manner of
the batch programs listrefs and troff). Reference formatting eventually contracted into a
single method with two binary switches; these seemed to give the user just the right
amount of control.

Along the way, several minor functions design became obsolete. Some were simply
subsumed by other, evolving functions. In other cases, they became irrelevant. For
example, some of the original minor functions turned out to be artifacts of a particular
style of user interaction; when that style changed, the functions disappeared.

Some of the originally designed functions never did seem important enough to
implement, although one resurfaced later, during the experiment described in this report.

New functionality emerged as I integrated BiblioText with the evolving SunView
environment. For example, the SunView global selection service made it possible to cut
and paste between windows, to the advantage of some BiblioText functions. The Sun-
View defaults database arrived to provide a more powerful and simpler method for
allowing user configuration; this replaced the original ‘‘.bbrc’’ file that contained startup
information.

User Interface Changes

I gradually simplified the ‘‘kitchen-sink’’ control panel; this nearly always required
other changes, both to internal structures and to functionality. For example, the sorting
function originally required that the user type a sort ‘‘template’’ according to an obscure
convention. When SunView menus arrived, I replaced the template field with a button
and popup menu; the menu displayed a predefined set of sorting options, labeled in plain
English.

The arrival of secondary frames made it possible to implement popup prompters for
short interactions, eliminating more type in fields. They also made it possible to display
auxiliary information in auxiliary windows, eliminating the need to multiplex the main

-5-

Designing BiblioText ‘ 2. Some Background

window (and thereby eliminating a mode).

Finally, BiblioText’s appearance improved gradually, in no small part because the
SunView library of objects did likewise.

2.3. Thoughts on Program Design and Evolution

Experience with the original project at subsequent evolution anticipated some of the
issues that appeared during the experiment described in this report. Some of these were:

e The Paradigm Shift. The prototype imported both functionality and software com-
ponents directly from existing batch programs. Many proved to be generally incom-
patible with the needs of the browser, which follows the editor paradigm; most of
them eventually changed.

e The Representation Problem. Weaknesses in the bib data model become gradually
more troublesome in this new environment.

e [mplementation Support. Inflexibility in early SunView software made it impossible to
exploit the full potential of the workstation.

e Information Structures & Hypertext. In the original report I began to think about
BiblioText as ‘‘a specific instance of a hypertext browser.”” This line of thinking
guided many subsequent changes, before and after the experiment described in this
report, and emerges as a main theme in the current version of BiblioText [Van88].

e Coevolution. It would be more accurate to describe changes to BiblioText as coevolu-
tion together with my personal working environment; both changed gradually with a
great deal of influence on one another.

3. Descriptive Models

This section begins the first phase of the experiment, an evaluation of BiblioText as
it existed at the beginning of the project. This evaluation is based on version 3.3,
referred to in this report as the old interface; figures 3.1 and 3.2 below show the old inter-
face in operation.

The evaluation of the old interface begins with the construction of a set of descrip-
tive models that explain various aspects of the program. The models reported in this sec-
tion are the starting point for the higher level evaluations that follow (section 4
‘““Theoretical Evaluations’”).

During the construction of these models, the process of putting aspects of
BiblioText into various coherent frameworks tummed out to be a productive form of
analysis itself. Several issues arose that foreshadowed later problems; the concluding
part of this section reports some of these, along with reflections on the utility of building
these models in the first place.

The following parts of this section discuss four different descriptions of the old
interface. The first was to be a complete specification, to serve as the basis for later
models and later phases of the experiment. This attempt ended in failure, swamped by
details. The second description is a predictive model; it presents a simplified view in
terms of conceptual objects and operations, with as much interface detail as possible
excluded. The third and fourth describe aspects of the user interface: state information

6 -

Designing BiblioText 3. Descriptive Models

liography ‘¥iewer.3.3 ADir:= / CEARER TR
15 Refs. Sort: Unsorted 0 verbose O Sources Indexes

[4]1. P. Heckel,
% The Elements of Friendly Softuare Design, Warner Books, New York, 1382
4 [notes]

. S. Maass,
"Why Systems Transparency?", Psychology of Computer Use, New York, NY,
1983, 139-28.

3. D. A. Norman,
“The Trouble with UNIX", Datamation, Nov. 1981.

4. E. V. Dijkstra,
AR SRSI’Y on Computing: A Personal Perspective, Springer Yerlag,

982.
1962. vl LOOKUP keyuords
5. D. A. Norman, LOAD from file

"Cognitive Eng1neer1ng", in Us| STORE to file

ves on Human-Computer Intera make CITATION g

rs), Laurence Eribaum Associat] view NOTES 4
vieu RAW reference ?

6. A. A. diSesssa -
" ’ view DEFINITIONS
Notes on the Future of Progra DELETE refs

User Centered System Design:

action, D. A. Norman and S. W. DELETE M_-L .
iates, Hillsdale, NJ, 1986, 12 Set Working Dir. f
textsu - §

Lty Barrier”, 1n
gn—-Computer Inter
fce Erlbaum Assoc

7. E. C. Ciccarelld,
"Presentation Based User Interfaces", TR 794, MIT AI Lab., Cambridge, M
A, Aug. 1984. Ph.D. Diss. [notes] [X]

Figure 3.1
The old interface: main menu visible

present inside BiblioText (and the visibility of that state), and an inventory of user com-
mands and their syntactic categories.

3.1. A Full Specification

The first description of the old interface was to be a complete functional
specification of BiblioText’s old interface. The specification would describe every aspect
of the program’s operation, as seen by a user. It was intended to serve as the baseline for
anticipated design changes, as well as the foundation for other, more abstract models.

After some effort, this attempt was abandoned. The volume of detail required to
give a complete account of the program’s behavior grew to the point that the
specification became unmanageable and incomprehensible (and therefore useless).

-7

Designing BiblioText 3. Descriptive Models

liography:¥iewers3.3 “&Dir :7/usr2/cggs/mlvdv oiisdiseniyE x4
15 Refs. Sort: Unsorted O verbose [Sources Indexs/ mlvdvl

1. P. Heckel, v’ journals

[notes] robert
eduardo

2. S. Maass, ohi 1

"Why Systems Transparency?", Psychology of Computer Use, Ne
1983, 19-28.

3. D. A. Norman,
"The Trouble with UNIX", Datamation, Nov. 1981.

4. E. W. Dijkstra,
Select Writings on Computing: A Personal Perspective, Springer Yerlag,

1982. [w]

5. D. A. Norman,

"Cognitive Engineering”, in User Centered System Design: New Perspect
yes on Human-Computer Interaction, D. A. Norman and S. W. Draper (edito
rs), Lawrence Erlbaum Associates, Hillsdale, NJ, 1886, 31-61. [X]

6. A. A. diSessa,

“Notes on the Future of Programming: Breaking the Utility Barrier", in
User Centered System Design: New Perspectives on Human-Computer Inter
action, D. A. Norman and S. W. Draper (editors), Lawrence Erlbaum Assoc
iates, Hillsdale, NJ, 1986, 125-152. [notes] ([X]

7. E. C. Ciccarelli,
“"presentation Based User Interfaces", TR 794, MIT AI Lab., Cambridge, M
A, dug. 1984. Ph.D. Diss. [notes] [X]

Figure 3.2
The old interface: index menu visible

One problem was the importation into BiblioText of the semantics of various
aspects of its operating context: the UNIX file system, the precise semantics of bib data-
bases, the physical mouse and keyboard, and interactions with other clients of the win-
dow manager. Another source of imported complexity was the SunView toolkit for
building interactive programs; to describe precisely the operation of BiblioText would
have required the inclusion of better documentation on SunView’s operation than was
available from its authors.

And yet, none of those imported semantics, with all their complex behavior and rich
internal state, could be omitted from a complete functional specification. The final result
of this effort was a sketchy inventory, in outline form, that was too long and yet omitted
too much detail. The conceptual model described next turned out to be much more use-
ful.

.
o
a3
s
203
e
i
<
<l
X

The Elements of Friendly Software Design, Warner Books, Neusv” Proceedings

—

Designing BiblioText 3. Descriptive Models

3.2. A Conceptual Model

This model explains what BiblioText does in terms of conceptual entities and opera-
tions on those entities, much like the implied register models of Young [You81]. Like
Young’s models, this model enables the user to predict the program’s behavior in
response to various inputs. Other terms for this kind of model are surrogate model and
structural model [diS86].

This model omits as much mention of BiblioText’s user interface as possible.
Unfortunately the distinction between conceptual operation and user interface proves to
be a blurry one, for many of the same reasons that the attempted full specification failed.
The implementation itself offers little help. The boundary between BiblioText’s code and
that of the imported SunView toolkit library represents more a division of labor and a
standardization of parts, not a division between functionality and interface. Both parts of
the attend to both areas.

In the end, the choice of how much to include in this model is a matter of judge-
ment. The criterion concerns the utility of the model as an explanation, which is, in turn,
dependent on the audience.

I: The Ref.

The atomic concept in this model is the ref., an internally stored copy of a biblio-
graphic reference in bib raw form [BuL82]. A typical raw ref. is a group of textual lines
(or fields), something like the following:

%A Douglas C. Engelbart

%A William K. English

%T A Research Center for Augmenting Human Intellect
%J FJCC

%P 395-410

%D 1968

Along with each ref. in raw form, BiblioText keeps track internally of the following asso-
ciated information:

e Ref. Source: This is the name of the file from which the raw ref. was read (not the
name of the index used to find it).

e Cite Source: If a ref. in the collection was located via imprecise citation in a docu-
ment, this annotation contains (a) the name of the document file containing the cita-
tion, and (b) the citation string itself.

e Separate Notes: This is the name of a file, appearing in a %Z field.

A ref. may be discarded from the running program, but it does not modify its original
source.

Designing BiblioText 3. Descriptive Models

II: The Collection

The principal piece of interesting state in BiblioText is the (single) current collec-
tion of refs., referred to here simply as the collection. It is a list of refs. that contains no
duplicates.

III: The Viewer
BiblioText’s viewer is a scrollable text subwindow that constantly displays a for-
matted version of the current collection. It also displays:
e the sequence number of each ref. in the collection;
e the total count of refs. in the collection; and

e a scrollbar bubble that suggests which part of the formatted collection is currently
visible.

The viewer has two binary mode settings:
e Verbose Mode, and
e Sources Mode.

Formatting converts the contents of raw form refs. to a more readable display.
Some fields (such as title, %T) are always included in the formatted display. Some fields
(such as extra keywords for indexing, %K) are never formatted. Three types of fields are
handled specially, using various forms of ellipsis:

e %W (location) always appears as [W].

® %X (additional comments) appears as [X] when Verbose Mode is off and as
[X] <some comments> when Verbose Mode is on.

e %Z (name of file containing additional notes) always appears as [notes].

Raw format refs. typically contain abbreviations that are expanded during formatting.
For example the string PROC expands to Proceedings when Verbose Mode is on and to
Proc. when Verbose Mode is off. Finally, when Sources Mode is on, each formatted
ref. is annotated with filenames representing the source of the raw ref. and the source of
the citation (if any) which identified the ref.

Operations that affect the viewer are:
e Scroll Viewer relocates the visible part of the formatted display.
e Resize Frame alters the size of the visible part of the formatted display.

IV: The Selection

The user may select a contiguous stream of characters in the formatted display,
using standard SunView mouse commands (left button selects a character, middle button
extends the selection). The current character selection appears highlighted in the viewer.

The current character selection determines the current selection of refs. This is
defined to include any refs. whose display contains selected characters.

10 -

Designing BiblioText 3. Descriptive Models

V: Adding Refs.
The user may acquire additional refs. from outside the collection. In every case,
BiblioText appends newly acquired refs. to the collection and eliminates duplicates.

e Lookup from Keywords collects refs. using an index search on the conjunction of
specified keywords.

e Read from File collects refs. by reading raw refs. or citations from a specified file.
There are several modes (settings in the browser) that affect these operations:

o Active Indexes specify which indexes to use for keyword lookups.

e Last used keywords appears as the default keyword argument.

e Last used input file name appears as the default file name argument.

e Current Working Directory specifies a path prefix for file names.

e The File Type of the input file for a Read from File may be raw format refs. or a text
file containing imprecise citations; the Read function classifies each input file
automatically.

VI: Deleting Refs.

The user may selectively removed refs. from the collection.
e Delete Selected Refs. removes the currently selected refs. from the collection.
e Delete All Refs. removes all refs. from the current collection.

VII: Rearranging the Collection

The collection always has the property Current Sort Order. One distinguished order
is Unsorted, meaning that the order is uncertain.
e Sort Collection arranges the collection into a specified order.

VIII: Saving the Collection

The user may copy the current collection to a file.
e Store to File writes current collection in raw form to a specified file.

There are several modes (settings in the browser) that affect this operation:
e Last used output file name appears as the default file name argument.
e Current Working Directory specifies a path prefix for file names.

IX: Popups
Popups are auxiliary frames, separately manipulable window entities, that appear
transiently for special purposes. They appear in two basic versions:

e Prompters appear during command execution to gather additional information from
the user. A prompter receives all user input and remains visible until the user presses
the left button over either of the panel items OK or Cancel on the prompter.

e Auxiliary displays appear in response to commands that request additional informa-
tion. An auxiliary display persists as a separately manipulable window object until

211 -

ram

Designing BiblioText 3. Descriptive Models

the user specifically requests that it disappear.

X: Auxiliary Information

The user may request additional information that is not normally visible.

¢ Make Citation creates a unique imprecise citation for the first ref. in the current selec-
tion, using heuristics and inefficient repeated search of the indexes. It makes the
result the current primary selection in the SunView selection service.

¢ View External Notes on Selected Ref. displays for viewing and editing external notes
associated with a ref., as identified by a %Z field containing a file name.

¢ View Definitions displays the files that contain definitions of abbreviations used in raw
bib data, also known as bib macros.

XI: Setting Modes

These commands explicitly set modes that affect the operation of other functions.

e Set Working Directory supplies a path name to be prepended to all file names supplied
for reading and writing.
e Set Display Modes sets the two display modes Verbose Mode and Sources Mode.

e Set Active Indexes controls which of the available indexes will be searched during
ensuing Lookup from Keywords operations.

XII: Misc.

At startup, the programs reads configuration information from the user’s defaults
database, a standard SunView facility. The user may view and alter this information
using the SunView program DefaultsEditor. Configuration information includes

¢ Inidal settings of the two display modes;
e Locations of files containing definitions; and
e Descriptions of Indexes to be used for keyword lookups.

3.3. State and Visibility

Unlike the conceptual model presented above, the description here deals more
directly with the user interface. This summary lists each aspect of the internal state of
BiblioText that is of relevance to the user, and describes how BiblioText makes that state
visible. Figures 3.1 and 3.2 show how some of this appears.

Always Visible State

A formatted version of the current collection is always visible, at least in part, lim-
ited by the size of the viewer and the current scrolling position. The most important parts
of each raw ref. in the collection are always visible in the formatted display:

e basic bibliographic information such as author(s), title, journal, report number,
volume, date, page numbers; and

-12-

Designing BiblioText 3. Descriptive Models

e clided versions of some fields, such as [W] for %W (location) fields and [notes] for %Z
(location of external notes) fields.

Other aspects of the current collection are also continually visible.

e A sequence number (relative to the current collection) appears with the display of
each ref.

e The scrollbar bubble displays the current scroll position. indicated
e The number of Refs. in the collection appears in the upper left comer of the panel.

e The current text selection, if any, appears highlighted with reverse video (though it
may be invisible because of scrolling).

e The current Sort Order is visible in the Sort: item in the panel, top row second from
left.

The state of the two display modes is part of the viewer, not of the collection.

e The status of Verbose Mode appears in the top row of the panel as the item Verbose
just to the left of a small box; when the mode is on, the box displays a check mark.

e The status of Sources Mode appears in the top row of the panel as the item Sources
just to the left of a small box; when the mode is on, the box displays a check mark.

Another mode, always visible, is relevant neither to the current collection nor to the
viewer.

e The current value of the Working Directory mode appears in the banner of the pro-
gram, above the panel, in a field titled Dir:.

State Visible On Direct Request

Some parts of each raw ref. in the collection are only visible when explicitly
requested by the user.

e Contents of %X fields (internal comments) only appear in the viewer when
Verbose Mode is on.

e The name of the file from which each raw ref. was read only appears (formatted) in
the viewer when Sources Mode is on.

e For those refs. that were collected by reading citations from text files, the name of the
file from which the citation was obtained only appears (formatted) in the viewer when
Sources Mode is on.

o Those parts of each raw ref. that are not formatted at all, %K fields (keywords) for
example, are only visible when the user requests it with the operation View Refs. in
Raw Format. This information appears in an auxiliary frame.

e External notes that are optionally associated with each raw ref. are only visible when
the user requests it with the operation View External Notes on Selected Ref.. This
information appears in an auxiliary frame.

One set of mode information, directly relevant to neither collection nor viewer, is
likewise not always visible:

e The list of available indexes (with status of each) is only available in a menu that
appears when the user right mouse buttons over the Indexes item in the panel, top row
at the right. Each available index appears as a choice in the menu; each index that is

-13-

Designing BiblioText 3. Descriptive Models

currently active has a check mark next to its name in the menu.
Finally, one tangential set of information, is available on request:

e The files of definitions used to expand raw refs. are visible when the user requests it
with the operation View Definitions. This information appears in an auxiliary frame.

Other State

Some aspects of BiblioText’s internal state become visible only indirectly. In par-
ticular, arguments are retained between invocations of certain commands. They appear
in the input field of typein prompters when a new command is invoked, and the user may
reuse them by simply invoking OK. Retained arguments include:

e keywords for lookup.
e input file name for read.
e output file name for saves.

3.4. Command Formation

This section summarizes how the user initiates commands in the current BiblioText
user interface. There are two issues, reflected in two separate taxonomies of the available
operations: argument discipline and command invocation.

Argument Discipline

This summary lists all functions available to the user, organized around the method
for supplying arguments to each.

e Panel selection or menu. When a left button press can be used (as for Sort and display
modes), command invocation and argument selection are coincident. When a right
button press can be used (as for all three), the mouse button down is command invoca-
tion, and the mouse moves with mouse button up is argument selection. Functions
following this discipline are:

Sort Collection
Set Display Modes
Set Active Indexes

e Prefix commands. The command is selected first, then a prompter gathers input argu-
ments. Functions following this discipline are:

Lookup from Keywords
Read from File

Store to File

Set Working Directory

14

Designing BiblioText 3. Descriptive Models

e Postfix commands. The argument (here one or more refs. in the collection) are selected
first, then the command is initiated. Functions following this discipline are:

Delete Selected Refs.

Make Citation

View Refs. in Raw Format

View External Notes on Selected Ref.

e No arguments. Two commands have no arguments at all:

View Definitions
Delete All Refs.

e Mixed. Finally, two standard SunView interface commands are a little bit of each.
Some parts of the command arguments are selected coincident with command invoca-
tion, others are supplied by mouse movements afterwards:

Scroll Viewer
Resize Frame

Invocation

This summary lists all functions available to the user, organized by location in
BiblioText’s visual interface where they can be initiated with mouse button press. Each
is annotated with the argument discipline identified above.

e Main Menu. A right button press over the viewer brings up the Main Menu with the
following operations available for selection.

Lookup from Keywords (prefix)

Read from File (prefix)

Store to File (prefix)

Make Citation (postfix)

View External Notes on Selected Ref. {postfix)
View Refs. in Raw Format (postfix)

View Definitions (no args.)

Delete Selected Refs. (postfix)

Delete All Refs." (no args.)

Set Working Directory (prefix)

e Panel Items. The top row of the panel displays four items. The leftmost displays the
number of refs. and is not active. The next three respond to mouse button presses with
command invocations. Note that the two display modes are part of the same item. A

- 15 -

Designing BiblioText 3. Descriptive Models

left button press over one of them toggles its state; a right button press over either
pops up a a menu with both modes displayed, much like the indexes item.

Sort Collection (menu selection)
Set Display Modes (panel/menu selection)
Set Active Indexes (menu selection)

e Frame. Finally, button presses over BiblioText’s window boundaries invoke standard
SunView functions. Both scrollbar and outer frame responds to a variety of button
presses and accelerators.

Scroll Viewer (mixed)
Resize Frame (mixed)

3.5. Thoughts on Model Building

This part of the experiment was my first attempt (after one and one half years of
development and use) to craft coherent explanations of BiblioText’s behavior. It was
surprisingly difficult. This section concludes with some observations on the process of
constructing these descriptions.

Separating Functionality from Interface

A surprising source of difficulty was the separation of functionality from interface.
This contributed to the failure of the full specification and muddled early attempts at the
conceptual model.

For example, one choice of command syntax generated new functional behavior.
Commands like Lookup from Keywords are prefix commands, so a prompter appears in
which keywords can be typed. The prompter appears displaying a default value; this
arrangement requires additional functions like Accept Defaults and Cancel, each of
which has its own functional description.

Other examples derive from the inclusion of active SunView objects: panel buttons,
menus, scrollbars, and the like. These have their own semantics and functionality, only
some of which is configurable by client programs like BiblioText. Use of these objects
helps build interfaces, but results in programs for which simple explanatory models are
inadequate.

A common counterargument on the matter of interface toolkits is that consistency
across applications has its own rewards, and that experienced users will benefit. This
advantage can only be gained when the designer can (a) forecast the level of experience
in users, and (b) integrate as cleanly as possible the models induced by a toolkit with
those models appropriate for the particular application at hand. This can be difficult, and
1s an instance of the imposition of various contexts on design, to be discussed more fully
later (section 4.6 ‘“Thoughts on Theoretical Evaluations’’).

- 16 -

Designing BiblioText 3. Descriptive Models

In the end, I constructed a model that ignores as much of the interface functionality
as possible. The model is simpler, but relies heavily on external context for its suitability
as an explanation. Users familiar with omitted aspects of the interface will learn to use
the program easily; those unfamiliar will find that the conceptual model doesn’t help
them at all. For example, a user unfamiliar with SunView might be unable to locate
frame operations, and might never think to get the main menu with a right mouse button
press over the window’s narrow boundary. The popup prompter, on the other hand,
might be a bit unfamiliar to the user who has never seen a Macintosh in operation.

Task vs. Conceptual Models

My first attempts at explanation derived from an earlier functional design, but con-
tained much more detail. All attempts to organize the volume of detail failed to produce
a coherent whole, however. One explanation might be that both my original design and
intervening use had always been implicitly oriented around task descriptions and had
been much more like Young’s simple model of the ALG calculator [You81] than like a
conceptual or predictive model. The confusion may be an instance of what diSessa calls
the hacker bug, ‘‘in the extreme, to allow a structure for each function in the language’’
[diS86].

As further evidence, I found it necessary to invent concepts that had never been part
of my understanding of the program. For example, even though I had not thought of
them that way, it became necessary to describe the collection and the viewer as separate
conceptual objects, each surrounded by its own functionality. This helped explain trou-
blesome parts of BiblioText’s behavior such as:

e The user can edit (in a sense) the collection, but not the contents of a particular ref.

e There are many visual presentations possible for each ref. Differences among
representations are confounded a bit by abbreviations and various display modes.

I never did manage to explain some things conceptually. For example, the
discrepancy between textual selection (as highlighted in the viewer) and the current
selected refs. on which some commands operate derived from an implementation restric-
tion and admitted to no other coherent explanation.

Categorizing The Sort Function

The attempt to clarify a conceptual model turned up an interesting question. Should
the Sort function be considered an operation on the collection (like adding and deleting
refs.) or a viewer option (like setting viewer modes)? It has overtones of each. For
example, the current sort order persists somewhat and had always seemed naturally
situated on the panel along with two other items that are both modes; on the other hand,
all other operations that edit the collection seem naturally situated in the main menu.
This suggests Sort as. a viewing mode. And yet sorting seems intuitively like doing
something to the object being sorted.

The conceptual distinction depends on how one defines the collection. If the collec-
tion is defined to be an ordered /ist, then Sort is an operation on the collection since it
changes it. If, on the other hand, the collection is defined to be a set, then Sort does not
change it and is merely a viewing option (like Verbose Mode).

-17 -

kiR

Designing BiblioText 3. Descriptive Models

I originally concluded that this distinction is an artifact of attempts to impose a
needlessly detailed model onto BiblioText, and that it is of no consequence to users.
Sorting is reasonably well understood, BiblioText’s response to Sort operations is
predictable, and it would be hard to explain the distinction to a user.

There turned out to be more to it, however, as later analysis revealed (section 5.4
““The Editing Model’’). Attempts to design the semantics (a conceptual model) for a
general undo function in BiblioText made the distinction between the two interpretations
crucial. If Sort is an operation (like other edits), then a sensible and intuitively under-
standable conceptual model for undo can be designed. The necessary model of undo, by
the way, is much like Young’s simple verbal model of the ALG calculator; here it is sim-
ply ‘“‘reverse the last operation performed.”’ If, on the other hand, Sort is a viewing
mode, then a model for undo can be designed, but it admits to no comprehensible expla-
nation.

Minor bugs in model

Creating the models uncovered several places where functionality is inherited from
implementation and cannot be reasonably explained. These issues had never appeared
(or didn’t seem to matter) when taking the task based approach to BiblioText’s design.

For example, each ref. has associated with it the name of the file from which the ref.
was obtained, and may have associated with it the name of a file from which a citation
was read that identified the ref. However, refs. can be added from multiple sources.
During a single lookup, a ref. might exist in more than one index. During successive
lookups, acquired refs. are sometimes not added if they would duplicate a ref. already
present (even if located in a different index). The same applies to citations, since a ref.
might be cited multiply in one file or in several files. In practice, file names become
associated with each ref. at the time it is first acquired, but this doesn’t always have a
clear analogue in the conceptual model.

4. Theoretical Evaluations

This section continues the first phase of the experiment, an evaluation of BiblioText
as it existed at the beginning of the project. This evaluation describes version 3.3,
referred to as the old interface; figures 3.1 and 3.2 in the previous section show the old
interface in operation.

The evaluation began with a set of descriptive models, each focusing on different
aspects of the program (section 3 ‘‘Descriptive Models’’). This section moves the
evaluation to a higher level of abstraction by by judging the old interface from different
points of view, many of them theoretically motivated.

Each part of this section adopts a particular point of view, and notes the motivation
for each. Several of these amount to an attempt to follow the advice implied by selected
works from the research literature on human interface design. These approaches are
necessarily informal, because the literature is seldom prescriptive in any useful sense.

When the evaluation leads to suggestions for improvement, these appear in spe-
cially typeset paragraphs. The collected suggestions from this evaluation are the raw
material for the next phase of the experiment (section 5 ‘‘Redesign’’).

- 18

Designing BiblioText 4. Theoretical Evaluations

A recurring difficulty during the work reported in this section was the need to place
BiblioText in some particular context before useful judgements could be made. The con-
cluding part of this section reports on this difficulty in more detail, along with thoughts
on the relevance of the various theoretical points of view.

4.1. Intuition

The first point of view for judging the interface is the one that had been in effect all
along: intuition based on personal experience. A few points were on my list of things
about the interface that ‘‘weren’t quite right.”’

e Each panel item is configured to behave a bit differently than the rest.

e The user selects characters in the viewer, whereas BiblioText commands operate at
the granularity of whole refs.

e The main menu is cluttered, disorganized, and slow to use.
These arise again in the evaluations below, along with suggestions for their repair.

4.2. Task Analysis

The next point of view for judging the interface returns to the motivation for build-
ing the original prototype of BiblioText, an inventory of the user tasks the program is
intended to support. This section reconsiders each of those tasks, describing step by step
how a user might accomplish the task using BiblioText.

This review should yield a sense of the task domain and how it must be mapped into
the domain of BiblioText. In the terms of Don Norman, this should reveal a bit about the
gulf of execution [Nor86], both semantic and articulatory distance that must be spanned
[HHNS86]

Locate a Ref.

Several tasks begin with the identification of some specific document, and in partic-
ular to find the ref. that acts as a surrogate for the document of interest. The purpose of
the Locate a Ref. task is to get this surrogate into the current collection and visible to the
user.

Thus, this task provides the context for many other tasks. However, it is inherent to
browsing that this task is in turn the result of an indeterminate collection of other tasks:
keyword lookup, scrolling, sorting, and the like. The Locate a Ref. task appears expli-
citly, however, to serve as a reminder that various tasks in this interactive environment
are interconnected in ways that defy simple analysis.

Locate Notes on a Specific Document
The first step establishes the context, namely that some interesting ref. is in view as
a surrogate for the document.

(1) Locate ref. by some context dependent means, using keyword lookups, file loads,
scrolling, sorting, and the like.

In the current arrangement, notes can be stored in two ways. They can be in an external
file named in a %Z field, or they can be internal to the raw ref. data, in a %X field. We’ll

-19 -

i

Designing BiblioText 4. Theoretical Evaluations

look at the former case first.

(2) See if external notes are present. If so, [notes] appears in the formatted output.

(3) Select ref. with a left button press over its display.

(4) Request notes with view NOTES in the main menu.

In the second case, internal notes are already on display if Verbose Mode is on. If not:
(2) See if internal notes are present. If so, [X] appears in the formatted output.

(3) Turn on Verbose Mode with a left button press over the panel item.

The last step here has the effect of making the entire collection displayed verbosely, a bit
more than what was wanted.

SUGGESTION: Allow Verbose Mode to be set independently for each ref.

Locate a Specific Document

The task here is to discover where a document is physically stored, once a ref.
describing it is located (as above) in some other task context.

(1) Locate ref. by some context dependent means, using keyword lookups, file loads,
scrolling, sorting, and the like.

Information about the physical whereabouts of a document can be recorded in two ways;
both may be necessary. The first method uses the name of the file from which the ref.
was found. In the presence of multiple indexes (belonging to multiple people) this points
to the person whose database contained the ref. Individuals may use the file name to
further specify physical location within their own databases.

(2) Turn on Sources Mode, if not already on, with a left button press over the panel item.
This may not help users who have only one index and whose refs. reside in an undif-
ferentiated mass.

The second way to record location data is in a %W field, included in the bib raw data

specification, but without further guidance or constraints. One might store in these fields

the owner’s name (when it belongs somebody else), a call number (when obtained from a

library), or a page number (when a reprint appears in a tutorial or other bound collection

of reprints).

(3) See if internal location data is present. If so, [W] appears in the formatted output.

(4) Select ref. with a left button press over its display.

(5) Request raw display of selected ref. with view RAW references in the main menu.

This seems a bit awkward when compared to the handling of internal notes in %X fields.

All that is wanted here is a single field of information, usually only a word or two in

length.

SUGGESTION: Display [W] <locn.> when Verbose Mode, is on, analogous to
the handling of [X].

This leads in turn to the suggestion made above, that the choice of Terse/Verbose Mode

be made on a per ref. basis.

=20 -

[~ |

Designing BiblioText 4. Theoretical Evaluations

Write a Document, Citing Other Documents

This task presumes that an editor somewhere on the screen is currently active and
contains the document being written. And, as above, it presumes that some other task
has resulted in the location of the ref. describing the document to cite.

(1) Locate ref. by some context dependent means, using keyword lookups, file loads,
scrolling, sorting, and the like.

(2) Select ref. with a left button press over its display.
(3) Request citation with make CITATION in the main menu.

(4) Insert citation into document using some variant of the SunView interwindow copy
operation.

Maintain for Later Retrieval a Collection of Related Documents

The browser does not support, nor does it suggest a specific way to accomplish this
task. One possibility is to keep the collection as a separate file of refs. in raw format.

(1) Get old collection for perusal and maintenance, using LOAD from file in the main
menu.

At this point, one might want to make a variety of editing changes. Those supported are
adding, deleting, and sorting, but these are insufficient for generalized editing.

SUGGESTION: Complete basic editing functionality to allow arbitrary rear-
rangement of the collection.

The task of adding new refs. can be done two ways. The first, already described, is by
reading from another file of raw refs. The second is a keyword search, discussed below
under the task ‘‘Extract a New Group of Documents ...”". Deleting refs. involves the fol-
lowing steps.

(2) Select refs. to be deleted with a left button press over the display of the first ref. and,
if more than one is to be deleted, a right button press over the display of the last.
. (3) Request deletion using DELETE refs. in the main menu.

It may be desirable to maintain the collection in some order. The browser can sort
according to several standard criteria.

(4) Request a sort by selection from the right button menu over the Sort panel item.
Finally, one can save the collection for later reference.
(5) Store collection using STORE to file in the main menu.

This general approach is deficient in several ways, mainly with respect to data represen-
tation. First, such a collection redundantly stores copies of refs. copied out of a database,
and is therefore inefficient and insensitive to updates to the original data. Second, there
is no convenient way to integrate notes on the maintained collection with its storage.
These notes are crucial; insofar as one of these collections is a surrogate pile of reading
material organized by subject or project, additional notes must be made to play the role
of written marginal comments, paper clips marking pages, and Post-it” notes suggesting

9 Post-it is a Trademark of 3M Inc.

221 -

Designing BiblioText 4. Theoretical Evaluations

what part of the document is relevant to the subject or project at hand.

A workable solution, is to write a separate document that is, in effect, an annotated
bibliography. It requires slightly abnormal batch processing by bib and troff to print, and
only calls upon BiblioText for two tasks. The first task is to locate new documents and
prepare citations, discussed earlier. The second task is to read a current version of the
bibliography and collect the refs. for all its citations.

(6) Read an old collection using LOAD from File from the main menu.
There should be better solutions.

SUGGESTION: Create and support some specialized storage format(s) that
can be read, maintained, and stored directly by BiblioText; make the storage
external to the bib database so no indexes are affected, and refer to documents
in the database with imprecise citations.

Extract a New Group of Documents According to Unanticipated Criteria

This is the most exploratory, unstructured task. The heart of the task is the keyword
search.

(1) Request a keyword search using LOOKUP keywords in the main menu.
(2) Enter keywords into the typein prompter that appears.

(3) Start search with a left button press on OK in the prompter, or with an accelerator, the
RETURN key.

(4) Scan resulting collection using scrolling.

For some purposes, scanning might be aided by sorting or by an iterative combination of
deletions and sorts, both discussed already. A subsequent keyword search positions the
viewer at the first ref. added; this is to the first new ref. found by the search, since dupli-
cates are screened. BiblioText displays statistics (number of refs. found, number of refs.
added) that help the user evaluate the outcome of each search.

Typing strings into prompters can be redundant and tedious, especially when the
words to be typed have already appeared on the screen. For example, new keywords are
often suggested by the results of prior searching.

SUGGESTION: Support keyword lookup without requiring that interesting,
visible keywords be retyped into the popup prompter.

Likewise, searches might lead one to discover, when Sources Mode is on, a new file of
raw refs. that appears of special relevance.

SUGGESTION: Support file loading without requiring that visible file names
be retyped into the popup prompter

Peruse Personal Notes, Either from a Maintained Collection or Following Some Unanticipated Cri-
teria

The task here can start with a maintained collection or following some unantici-
pated criteria. This calls for iterations of tasks already discussed: locating refs., viewing
notes, and making new collections. One can imagine wanting to ‘‘spread out’’ notes
from several sources, but BiblioText only supports the viewing/editing of one external
file of notes at a time.

Designing BiblioText 4. Theoretical Evaluations

SUGGESTION: Allow multiple files of external notes to be viewed/edited
simultaneously.

Preview Citations in a troff Document

This task, and the one following, did not appear in the original task analysis, since
that analysis presumed no particular automatic tools. These two new tasks emerge only
in the presence of BiblioText and related software.

The original task analysis presumed nothing about troff or the imprecise citations
associated with bib. Given this mechanism, however, it is useful to quickly preview the
refs. being cited in a document, without waiting for batch processing by bib and associ-
ated phototypesetting. The preview help in two ways. First, it previews the references
section of the document, allowing the user to see what is being cited (and not cited).
Second, checks the correctness of the embedded citations; that these can be incorrect is a
known defect of the bib representation scheme.

(1) Empty current collection, using DELETE ALL in the main menu.

This first step ensures that the refs. in the collection are only those cited in the document
of interest. It is not necessary to empty the collection if the task is only to check for
erTors.

(2) Lookup citations in document, using LOAD from file in the main menu.

If an auxiliary frame titled errors in file <file name> appears, then the file contains cita-
tion errors. The auxiliary frame describes errors, one per line: source line number, key-
word string, and error type. The user can edit the document and use BiblioText to gen-
erate correct citations as replacements.

Maintain bib Data

Given the design constraints of BiblioText, it can offer almost no support for the
modification and maintenance of bib raw data and indexes. One exception, however, is
to display for easy browsing the files containing definitions and their expansions. This
simplifies the job of entering new bib data.

4.3. Metaphor

Opinions vary on the value of metaphor in the design user interfaces. Some writers
are enthusiastic and prescriptive [CaT82], and others are cautionary [HaM§82]. In any
case, a certain amount of this needs to be discussed, since every user will carry around
experience with artifacts that are like BiblioText in certain ways.

The search for natural metaphors yielded three different answers to the question:
“‘what is BiblioText like?’’ Each answer naturally suggests making BiblioText more like
the object of comparison. Conversely, each case can warn that differences between
BiblioText the object of comparison might be misleading to a user.

The Editor Metaphor

BiblioText is something like an editor, since it displays the contents of a buffer (the
collection) and supports operations like adding, deleting, and saving.

223

Designing BiblioText 4. Theoretical Evaluations

It differs from editors in two crucial ways. First, it is specialized to operate at the
granularity of refs., not characters. Since users with editor experience will find this
unfamiliar, the interface should make it abundantly clear. Unfortunately, selections are
currently highlighted at the granularity of characters, not refs., exacerbating this mislead-
ing part of the metaphor.

SUGGESTION: Alter the feedback response to selection so that highlighting
occurs only at the granularity of refs.

The second way in which the editor metaphor fails is in missing functionality.
Coarse granularity notwithstanding, a user might well expect to be able to move refs.
about arbitrarily within the collection. BiblioText only supports two kinds of edits: addi-
tions at the end of the collections and arbitrary deletions. There is no technical reason for
not supporting more general editing functionality; this analysis suggests that adding func-
tionality to make BiblioText more like familiar editors might make it simpler to under-
stand.

SUGGESTION: Complete basic editing functionality to allow arbitrary rear-
rangement of the collection.

The List Metaphor

BiblioText displays @ numbered list of refs. This is like numbered lists in general,
and particularly like printed bibliographies. Most numbered lists, however are static;
they are hard to rearrange and renumber quickly.

One way to make the display more like familiar printed bibliographies would be to
add elaborate (and selectable) formatting. But this corresponds precisely to a piece of the
original functional design that was eventually scrapped. Fancy formatting serves a role
in printed bibliographies, but tasks using the browser require quick skimming and unifor-
mity.

Another way to imitate printed bibliographies would be to allow annotation. This is
only weakly supported at present, since annotations must either reside in raw ref. files
(and therefore immune to change by BiblioText) or in external files (and therefore
require special purpose, offline processing to produce the annotated printed bibliography
in a familiar form). This leads to a suggestion that appeared earlier.

SUGGESTION: Create and support some specialized storage format(s) that
can be read, maintained, and stored directly by BiblioText; make the storage
external to the bib database so no indexes are affected, and refer to documents
in the database with imprecise citations.

The Note Card Metaphor

BiblioText supports the collection of references and notes in much the same way
that many people do with note cards.

BiblioText is specialized, however, and therefore not very good at many of the tasks
for which cards are well suited. The program NoteCards is a much closer approximation
to ordinary note cards and was inspired in exactly this way, but it has the complementary
weakness: ‘‘many users have found the task of structuring and processing their ideas in
NoteCards to be relatively difficult”” {[HMT87]. In contrast to NoteCards (and to the

224 -

Designing BiblioText 4. Theoretical Evaluations

more recent Hypercard [Goo87]), BiblioText supplies structure that is both suited to the
specific tasks at hand and optimized for them (consider the chore of skimming 100 refs.
stored one per card, looking for titles relevant to some subject).

4.4. Direct Manipulation

This section considers BiblioText in light of discussion about direct manipulation
interfaces, and with particular reference to the analysis presented by Hutchins, Hollan
and Norman [HHN86]. That paper begins with a summary of Schneiderman’s three cri-
teria, and the first evaluation of BiblioText proceeds from them.

Schneiderman’s Criteria

Criterion 1. Continuous representation of the object of interest.

This is generally true of BiblioText, since the collection is always on display in the
viewer. It is limited somewhat by the necessity for scrolling, since the total amount of
information in the collection can be large.

A related approach is to review the amount of BiblioText’s internal state that is not
continuously visible (section 3.3 ‘‘State and Visibility’’). Much of the state in this
category is of little ongoing interest, such as default arguments being retained between
commands. Other state in this category is not interesting because of size; it would
present too much information for quick browsing (such as the list of available indexes or
all external notes available for the current collection).

Some information contained in (or associated with) raw refs. is only visible in the
viewer by special request. The user controls the display by switching Verbose Mode and
Sources Mode. In some cases, information is merely elided when not present (internal
comments in %X fields), but in others it simply disappears (file names for
Sources Mode). Finally, there is some information in raw refs. that is never formatted
(keywords in %K fields); to see it the user must select the ref. and request a separate
display in raw format. This arrangement seems a bit arbitrary.

SUGGESTION: Generalize the method for formatting raw refs. When
Verbose Mode is off, attempt to display some representation of everything
present, elided in many cases. When Verbose Mode is on, display as much
more as possible, consistent with the goal of convenient browsing.

Criterion 2. Physical actions or labeled button presses instead of complex syntax.

This i1s generally true of BiblioText, since all commands are initiated with button
presses. However, as summarized earlier (section 3.4 ‘*‘Command Formation’’) the com-
plete specification of commands requires various prefix and postfix methods for argument
identification.

SUGGESTION: Make command formation either consistently prefix or
postfix.

Further, the main menu is large, disorganized, and provides little clue to general kinds of
functionality of commands.

SUGGESTION: Rationalize the main menu to make it easier to locate desired
operations.

Designing BiblioText 4. Theoretical Evaluations

Criterion 3. Rapid incremental reversible operations whose impact on the object of
interest is immediately visible.

Most operations in BiblioText are incremental and their effect on the object of
interest, the collection, is visible. A rationalized main menu (suggested above) should
make operations more rapidly initiated; and most operations (on a Sun-3) execute
quickly. Operations that execute slowly should make announcements to that effect dur-
ing their operations, but at present only one or two of them make such an announcement.

SUGGESTION: React quickly in some way to every command invocation.
Make clear to the user when the program is working and not available to
respond to other input.

Few BiblioText operations are reversible. Hutchins, Hollan and Norman [HHN86]
disagree about the absolute importance of reversibility, but it might be helpful for
BiblioText.

SUGGESTION: Make all operations on the collection reversible.

Criteria for Engagement

Hutchins, Hollan and Norman [HHNS86] discuss aspects of direct manipulation
interfaces in terms of distance and engagement. The task-based evaluation above
approaches the notion of directness by walking through typical tasks in the task domain.
This section evaluates BiblioText in terms of their four minimal requirements (all subjec-
tive) for the feeling of direct engagement.

Criterion 1. Execution and evaluation should exhibit both semantic and articulatory
directness.

In the extreme approach to this, typified by NoteCards and Hypercard, each card
(cluster of text) is separately manipulable. Operations on individual refs. in BiblioText
are less direct, but for reasons already described (section 4.3 ‘“Metaphor’’) more direct-
ness would result in less convenience for its most important tasks. BiblioText is special-
ized and can easily perform some indirect operations (such as Sort) that would be
difficult to achieve directly. This demonstrates a point Hutchins, Hollan and Norman
make in their section on Problems with Direct Manipulations:

It is important not to equate directness with ease of use. Indeed, if the inter-
face is really invisible, then the difficulties within the task domain get
transferred directly into difficulties for the user.

Criterion 2. Input and output languages of the interface should be inter-referential,
allowing an input expression to incorporate or make use of a previous out-
put expression.

BiblioText is inconsistent here. Refs. can be selected easily as arguments for opera-
tions, but other interesting objects cannot. Two prior suggestions (section 4.2 ‘‘Task
Analysis’”) suggest that visible entities other than refs. be easily selected as command
arguments.

SUGGESTION: Support keyword lookup without requiring that interesting,
visible keywords be retyped into the popup prompter.

Designing BiblioText 4. Theoretical Evaluations

SUGGESTION: Support file loading without requiring that visible file names
be retyped into the popup prompter.

This could be generalized even more. For example, the string [notes] in the viewer is a
surrogate for external notes, but requests to see those notes must now be initiated by
selecting the ref. and then invoking a separate command from the main menu.

SUGGESTION: Invoke the command view NOTES by buttoning the display of
[notes] in the viewer, rather than by selection from the main menu.

Criterion 3. The system should be responsive, with no delays between execution and the
results,

This issue appeared already in the discussion of Schneiderman’s criteria, along with
a suggestion for improvement.

SUGGESTION: React quickly in some way to every command invocation.
Make clear to the user when the program is working and not available to
respond to other input.

Criterion 4. The interface should be unobtrusive, not interfering or intruding....

This is subjective and defies analysis by the designer. Empirical evidence from
users may help with an evaluation here.

4.5. Visual Consistency

Several problems with visual consistency appeared, a side effect of the long and
thoughtful look at each piece of the BiblioText display occasioned by the various evalua-
tions. These issues arose independently of any particular theoretical motivation,
although the need for visual consistency is implicit in most of the cited literature.

Active vs. Nonactive Panel Items

Between four and six items appear on the panel (depending on how one counts).
Some of them respond to mouse clicks (the Sort item, the two display modes, and the
Indexes item), one does not (the current ref. count), and one responds only to selections
(the message line). There are no reliable visual clues to suggest which might respond
and which might not.

SUGGESTION: Provide visual cues to distinguish active from nonactive panel
1tems.

Active Item Display and Behavior

Each of the three active panel items appears and acts differently; this results from
trying to closely match each item’s unique semantics to a suitable SunView panel item,
without considering its neighbors in the panel. Semantically, the Sort item allows one
choice from many, the Display Modes item contains two binary switches, and the
Indexes item contains a variable number of binary switches. Behaviorally, the Sort item
always displays its current setting, the Display Modes item appears as two labeled boxes
that can be left buttoned separately, and the Indexes item appears simply as Indexes; all
three can be right buttoned for a menu. Taken as a whole, variations among three items
are potentially confusing.

-7 -

Designing BiblioText 4. Theoretical Evaluations

SUGGESTION: Make the appearance and behavior of the three active panel
items as much alike as their semantics, and SunView support, will allow.

Current Working Directory

According to the conceptual model the Current Working Directory (cwd) is a mode;
its current value affects the operation of some commands. There are two issues sur-
rounding the cwd: where to display its current value, and how the user initiates the com-
mand to change it.

The cwd’s value now appears in the banner, at the top of the main frame. One
advantage is compactness, since space in the banner is marginally free. It is also concep-
tually compatible with general UNIX functionality; cwd is a background property of most
programs and the banner already suggests a boundary between application and system (it
almost always displays the name of the application, for example). Finally, this display
technique for cwd appears (exactly as in BiblioText) in an example supplied in the *‘Sun
User Interface Conventions’’ appendix to the SunView manual [SSS86].

On the other hand, cwd is one of three modes, and the other two (display modes and
active indexes) appear in the panel (though their values are not always visible). This
view suggests that the three modes appear together, since they are functionally related in
this respect.

SUGGESTION: Display the value of Current Working Directly alongside the
other modes in the panel.

The second issue concerns command initiation. Cwd is changed by selecting set
Working Dir. from the main menu (and then typing into a popup prompter). However,
the main menu is associated with the display of the collection, conceptually distant from
the cwd; this would make it hard to locate. And as a side effect, the command adds to
the existing clutter in the main menu.

SUGGESTION: Move initiation of set Working Dir. from the main menu to a
location more consistent with its conceptual and visible position.

Auxiliary Frame Labels

Four different auxiliary frames appear at various times during BiblioText’s opera-
tion: raw data display, external notes display/editor, bib definitions display, and error
messages associated with reading citations from a text file. Each has a small panel at the
top, but each has a different style of identifying label. Some do not explicitly announce
that the auxiliary frame is associated with BiblioText.

SUGGESTION: Label auxiliary frames consistently: a BiblioText label, and
some message describing particular contents.

Auxiliary Frame ‘“Done’’ Operations

Every auxiliary frame has the Done operation (make the frame disappear) available
in its standard SunView frame menu. BiblioText’s auxiliary frames make this operation
available redundantly in other ways. Three of the frames have an entry labeled Done in
the main menu associated with the viewing area; this approach involves pushing the stan-
dard text subwindow (editing) menu into a submenu labeled textsw=>. The bib

_28 -

Designing BiblioText 4. Theoretical Evaluations

definitions frame, on the other hand, has a panel button item marked Done in the panel;
its text subwindow menu is unchanged.

Aside from inconsistency, this arrangement makes standard SunView editing func-
tions inconvenient. This is moderately important for the read-only frames (where search
is the only SunView command likely to be heavily used), but the viewer for external
notes may also be used to edit.

SUGGESTION: Standardize Done command invocation across all auxiliary
frames.

4.6. Thoughts on Theoretical Evaluations

Although the value of these evaluations cannot be judged until the remaining phases
of the experiment are complete, several problems became clear during this phase. Com-
ments on some of these follow.

Problems with Metaphor

Carroll and Thomas offer numerous suggestions for the use of metaphor in comput-
ing systems [CaT82], but their discussion is irrelevant to BiblioText and this experiment.
They consider how naive users learn a system and eventually become experienced. Here,
beginners are anything but naive; they are subject to many other influences, especially
opportunities to draw comparisons with other programs (including bib and lookup).
Instead of comparing BiblioText to non-computer artifacts, we need to think about how
BiblioText is like the SunView text editor, like emacs, or like the MaclIntosh clipboard.

Metaphor is important, and three were identified in this evaluation (editor, list, and
note card). None of the metaphors is adequate alone. In combination, however, (in par-
ticular the list and note card metaphors) they appear to have great explanatory power.
This patchwork is an example of the distributed models discussed by diSessa [diS86].

Problems with Direct Manipulation

One problem with direct manipulation was mentioned in the evaluation, a problem
identified by Hutchins, Hollan and Norman. BiblioText deliberately sacrifices directness
to make some operations in the task domain (such as sorting) easier for the user than if
direct manipulations were required.

A more general problem with this type of evaluation is that it depends heavily on
the task domain and the way one views it. In practice, one can make observations about
the task domain, but they are subject to influences difficult to analyze. For example, vari-
ations in working environment can dramatically affect how an individual user conceptu-
alizes the task domain. Furthermore, the presence of a new tool like BiblioText itself
affects how a user will think about the task domain. Finally, analysis of how a person
conceptualizes the world is sketchy under the best of circumstances.

The Problem of Context

As the preceding comments make clear, the evaluations during this phase of the
experiment were repeatedly confounded by the need to place BiblioText in its working
environment. Many judgments depended on an understanding of the assumptions

-29 .

Designing BiblioText 4. Theoretical Evaluations

prevalent in that working environment.

The design of BiblioText was influenced by many design and implementation para-

digms external to the project, a few of which appear in the list below. Their variety and
unpredictability suggests the difficulty of creating conceptually clean designs in existing
contexts.

UNIX Conventions. BiblioText users are, by definition, experienced with UNIX. For
example, SunView imports UNIX typing protocols that affect the behavior of
BiblioText’s popup prompters: DEL erases the previous character and Control-U
erases the whole line. Another important example is the file system based on path
names; files can be identified explicitly or by typing part of the path name to which is
prepended a bit of contextual state, the current working directory.

Bib Data. Users are familiar with the bib tools at some level. They already understand
raw format, imprecise citations and keywords, indexes, and the like. They may not be
aware of all possible fields, though, and they probably don’t appreciate the fine points
of erroneous multiple matches in the database.

SunView Support. A major constraint on the design of the interface is a simple one.
SunView provides high level support, making possible interactive, visually oriented
tools like BiblioText. At the same time, that approach limits design options to those
which are supported; many styles of interaction are not supported.

SunView Expertise. Users have some level of functional competence with standard
SunView operations. These include: basic operation with the cursor, frames, menus,
buttons, and the like; the selection service for moving text among windows; and the
SunView (textsw) editor.

Editing Paradigms. Most users understand a variety of editing paradigms. Those in
the local working environment rely on either vi and emacs (which, by the way, differ
significantly), but many also use microcomputers that support simple cut/paste edit-
ing. Macintosh users know what a clipboard is and how to use it. On the other hand,
nobody in this environment uses the SunView editor that constitutes BiblioText’s
viewer.

Changing Software Context. Contextual influences are in continual change. During
BiblioText’s evolution prior to this experiment, enormous changes were wrought by
successive releases of SunView. Not only do new components with newly designed
functionality appear (panel items, text subwindows in the form of editors, etc.), but
conventions for their use change. This is explicit in the ‘‘SunView Interface Conven-
tions’’ appendix in the current manual [SSS86], where comments appear like ““The
best use of the middle button is still being discussed.”” and elsewhere ‘... is not
recommended, as it conflicts with future plans”"

Changing Hardware Performance. A bit more subtly, changing workstation perfor-
mance has an effect. Operations that once ran slowly, and therefore required some
feedback during the interim, are now nearly instantaneous running on a Sun-3.

Changing User Expertise. Users themselves change with exposure to new tools and
new paradigms of interaction. For example, the term clipboard made popular by the
MaclIntosh computer is more widely understood than it was one and one half years
earlier, when the first prototype of BiblioText was built. SunView implements (with
release 3.0) an elaborate extension of the clipboard model for interwindow operations

30

Designing BiblioText 4. Theoretical Evaluations

that makes use of mouse selection and specially marked function keys (among others,
PUT, GET, and DELETE). Unfortunately, local experience suggests that most users at
present understand only small fragments of this complex model. This presents
difficult design choices: either mimic the entire SunView editing model for complete
integration, and risk making BiblioText as incomprehensible as SunView editing, or
detach from the SunView model entirely and invent yet another editing paradigm for
users who already have to cope with many different paradigms.

5. Redesign

This section presents the second phase of the experiment, a rework of BiblioText’s
user interface based on results from the first phase: models (section 3 ‘‘Descriptive
Models’’) and evaluations (section 4 ‘‘Theoretical Evaluations’’). The modifications
described here produced version 3.4, referred to as the new interface; figures 5.1 and 5.2
below show the new interface in operation.

Each part of this section begins by recapitulating a group of the suggestions that
arose during evaluation of the old interface. Each group corresponds to some general
area of BiblioText’s interface (and in one case an area of functionality), so that overlap-
ping and conflicting suggestions can be resolved together.

The discussion results in a design decision for each suggestion. Some suggestions
are elaborated into specific design changes. Other suggestions are rejected, either
because they conflict with other suggestions and high level goals, or because they are
technically infeasible. A few suggestions are postponed because of time limitations for
the project.

One recurring theme of this section (foreshadowed in the previous section) is com-
plex interdependency. Thoughts on the problems this causes appear in the final part of
this section.

5.1. Cosmetics and Visual Consistency

This group of suggestions addresses general visual improvements to BiblioText’s
old user interface.

Active vs. Nonactive Panel Items

SUGGESTION: Provide visual cues to distinguish active from nonactive panel

items. Decision: Use different fonts and separate lines.

The new interface presents two visual cues that reveal this distinction. The three
active items appear in the first line, and they appear in a bold font. The two informative
items (number of refs. in collection and informative messages) appear in the second line
in the standard font.

Active Panel Item Consistency

SUGGESTION: Make the appearance and behavior of the three active panel
items as much alike as their semantics, and SunView support, will allow.
Decision: All operate with menus; none display current values.

_31 -

Designing BiblioText 5. Redesign

sr2/cggs

SortOrder DisplayModes ActiveIndexes
15 Refs. Deleted ref. 16

Ma]1. P. Heckel,
: The Elements of Friendly Software Design, Warner Books, New York, 1382. [¥K]

[notes]

S. Maass
"why Systems,Transparency?", Psychology of Computer Use, New York, NY, 13883,
19-28. [%¥K]

3. D. A. Norman,

“The Trouble with UNIX", Datamation, Nov. 1981. [¥K]
~»| Keyword Lookup |}

4. E. ¥. Dijkstra, Make Citation

Select writings on Computing: A Personal Perspe{ Edit

[¥K]1 [3W] File

More Info.

“Cognitive Engineering”, in User Centered System textsu

Human-Computer Interaction, D. A. Norman and S. V. °r leditors), Laurenc
e Erlbaum Associates, Hillsdale, NJ, 1986, 31-81. [%K] [%¥x]

S. D. A. Norman,

6. A. A. diSessa,

“Notes on the Future of Programming: Breaking the Utility Barrier", in User

Centered System Design: New Perspectives on Human-Computer Interaction, D. A
. Norman and S. W. Draper (editors), Lawrence Erlbaum Associates, Hillsdale,

NJ, 1986, 125-152. [¥K] [notes] [¥X]

7. E. C. Ciccarelli,
"presentation Based User Interfaces", TR 794, MIT AI Lab., Cambridge, MA, Aug
. 1984. Ph.D. Diss. ([%K] [notes] [¥X]

Figure 5.1
The new interface: main menu visible

It would be difficult and wasteful of screen space for Indexes to display its settings
continually, like the other two panel items. It doesn’t seem imperative to continually
display current values of the other two items either, so reconfigure the other two to
appear more like Indexes. In the new interface, all three appear as only a (bold) text
label, renamed slightly to SortOrder, DisplayModes, and Activelndexes.

The three behave much more alike than in the old interface. Each responds to a
right button press with a menu that contains choices with checks; the remaining differ-
ence is that only one choice in the SortOrder menu can be selected at a time, whereas the
other two menus contain multiple binary switches. This final distinction, required by the
item’s differing semantics, manifests itself in one unfortunate way. SunView choice
items, like SortOrder, respond to an accelerator, a left button press that advances the
choice by one with no feedback other than the current value changing (if being displayed,

-32-

Designing BiblioText 5. Redesign

wer.-3.4 > 2 Dirs-Jusr2/cggs/mivdy =
SortOrder DisplayMoti®y./ Yerbose Display Mode
1S Refs. Display Reference Sources

Paul Heckel,
The Elements of Friendly Software Design, Warner Books, New York, 13982. [2K]
[notes]

Susanne Maass,
Y "why Systems Transparency?"', Psychology of Computer Use, New York, NY, 1883,
19-28. [%K]

3. Donald A. Norean,
"The Trouble with UNIX", Datamation, November 1981. [%K]

4. Edsger W. Dijkstra,
Select Writings on Computing: A Personal Perspective, Springer Yerlag, 1382.
[¥K] [¥W]=QA76.24.D54 1982.

S. Donald A. Norman,
"Cognitive Engineering", in User Centered System Design: Neu Perspectives on
Human-Computer Interaction, D. A. Norman and S. W. Draper (editors), Lawrenc
e Erlbaum Associates, Hillsdale, NJ, 1986, 31-61. [%¥K]
[%X] Goals: to understand principles of human action relevant to engineering
principles of design; to devise systems that are pleasant to use. Builds a s
imple model of the user based on bridging the gulf between the Physical Syste
m and the user’s Goals: Evaluation (->) and Execution ({-). Prescriptions:
create a science of user-centered design; take interface design seriously; se
parate the design of the interface from the design of the system; when design
ing, start with the needs of the user.

Andrea A. diSessa,
"Notes on the Future of Programming: Breaking the Utility Barrier”, in User
Centered System Design: New Perspectives on Human-Computer Interaction, D. A

Figure 5.2
The new interface: display mode menu visible

which for SortOrder is no longer the case). Thus, SortOrder is sensitive to left button
presses and the other two itemns are not. It is apparently not possible to disable this
feature. 10

Current Working Directory

SUGGESTION: Display the value of Current Working Directly alongside the
other modes in the panel. Decision: Reject.

10 Tt became clear later how to disable this feature, through use of some advanced SunView programming features.

-33.

¥ |

Designing BiblioText . 5. Redesign

SUGGESTION: Move initiation of set Working Dir. from the main menu to a
location more consistent with its conceptual and visible position. Decision:
Move command to frame menu.

These suggestions arose separately during evaluation, but must be resolved together.
The ‘‘principle of engagement’’ encourages a strong relationship between the initiation
of a command and its visual feedback.

The first suggestion is rejected. Arguments in favor of the old arrangement,
presented earlier (section 4.5 ‘“Visual Consistency’’), are more convincing. Even though
Current Working Directory is conceptually a mode in BiblioText, along with display
modes and indexes, it is a concept so firmly rooted in the world of UNIX, so closely asso-
ciated with the boundary between program and operating system, that it demands to be
treated specially. Its presence in the panel with other application specific information
would not be helpful.

Given the above decision, there seems to be no completely satisfactory response to
the second suggestion. The best appears to be moving the set Working Dir. command to
the frame menu, a general technique discussed in the SunView manual. In the new inter-
face, one sees this entry by making a right button press over the frame; the result is a
menu with two entries: Frame=> and Set Working Directory. The first entry announces a
submenu that contains standard frame manipulation commands, such as close and Quit.

This solution has the drawback that experienced SunView users may have trouble
finding it at first, since this approach, even though suggested in the SunView manual,
appears in none of the standard SunView programs or in any application programs in our
environment.

Auxiliary Frame Labels

SUGGESTION: Label auxiliary frames consistently: a BiblioText label, and
some message describing particular contents. Decision: Standardize labels.

In the new interface, each auxiliary frame has a label that begins with BiblioText:.
The rest of the label describes the contents of the particular frame, for example raw ref.
data, or errors in file <filename>.

Secondary Frame DONE Buttons and Menus

SUGGESTION: Standardize Done command invocation across all auxiliary
frames. Decision: Use a Done panel button in every auxiliary frame.

For consistency, each auxiliary frame in the new interface has a panel button item
labeled Done, positioned at the right. This is preferable to adding it to the viewer menu
for several reasons. First, a button item in the panel seems conceptually closer to the
frame than to the text display. Second, it costs no extra size in the frame. Finally, this
leaves the standard text subwindow menu in its customary configuration for those cases
where the user is allowed to edit the data on display (notably external notes).

An additional piece of consistency is gained in the new interface by adding a similar
panel button labeled Quit to the panel of BiblioText’s main frame. This is redundant,
since it duplicates the equivalent operation in the standard SunView frame menu, and
many application programs do not have such a button. However, the change to the frame

Designing BiblioText 5. Redesign

menu discussed above (Current Working Directory) pushes the Quit command down one
level into a less convenient submenu. All other entries in the frame (sub)menu have
redundant keyboard accelerators that allow experienced users to bypass the menu, but
Quit does not. In combination, these two factors argue for the addition of a Quit button to
the panel.

Signal When Working

SUGGESTION: React quickly in some way to every command invocation.
Make clear to the user when the program is working and not available to
respond to other input. Decision: Display a special message during all compu-
tations.

All commands have visual effect, but some are subject to processing delays. In the
old interface the message

sorting, please wait ...

appeared while BiblioText was sorting, since this is likely to be time consuming, but no
analogous message appeared for other operations. The new interface includes a generic
mechanism for announcing the beginning and completion of any non-trivial internal
operation; it announces

<doing whatevers>, please wait ...

when it begins, and clears the announcement when finished.

It would also help to change the cursor to an hourglass during these intervals; this is
also becoming more commonplace, and users can be expected to know what it means.
Unfortunately, SunView does not support cursor changes in text subwindows. 11

5.2. Command Formation

A complex of related suggestions arose for the improvement of command syntax;
these include argument selection, prefix vs. postfix models, menu arrangement, and
accelerators. Most of them need to be treated together.

Interoperability and Command Syntax Consistency

SUGGESTION: Support keyword lookup without requiring that interesting,
visible keywords be retyped into the popup prompter. Decision: If available,
use SunView global text selection as argument.

SUGGESTION: Support file loading without requiring that visible file names
be retyped into the popup prompter. Decision: If available, use SunView glo-
bal text selection as argument.

11 Cursor changes in text subwindows have since become possible.

-35.

Designing BiblioText . 5. Redesign

SUGGESTION: Make command formation either consistently prefix or
postfix. Decision: Commands are postfix, with exceptions.

These suggestions argue for an overhaul of the basic syntactic model of command
formation; they interact with one another and with the availability of SunView support
mechanisms.

The model from the old interface, as summarized earlier (section 3.4 ‘‘Command
Formation’’), is disjoint. Commands that operate on refs. in the collection are postfix:
the user selects refs. and then invokes the commands. Commands that require string
arguments, such as keyword lookup and file operations, are prefix: the user invokes the
commands and then types arguments into a popup prompter. Operation of prefix com-
mands is crippled by particular behavior of popup prompters; once a prompter is visible,
it grabs all input. The effect is that strings cannot be copied from elsewhere on the
screen (inside or outside BiblioText) into a prompter.12 This is a failure of interoperabil-
ity [HHNS6].

The twin goals of prefix/postfix consistency and interoperability suggest a general
approach: choose either prefix or postfix for command operation, and add whatever
machinery is necessary for interoperability.

The first possibility is to adopt a uniform prefix model. This requires two changes
to the old model. First, commands that operate on refs. must be altered to take arguments
(a ref. selection) after command invocation. A simple approach would require typing in
the numbers of the refs. to be deleted, but that would sacrifice the directness of pointing.
To allow pointing, the command would have to remain suspended until the user expli-
citly announced that a selection was ready. The second change would require that string
arguments be somehow selectable from the screen while the command remains
suspended. The SunView selection mechanism would not support this particularly well.
To allow argument selection from anywhere on the screen, the SunView selection service
must be invoked, but it is fundamentally biased toward the postfix model. For all these
reasons, the uniform prefix model is unworkable.

The second possibility, then, is to adopt the postfix model uniformly, like the rest of
SunView. This requires only one obvious change, namely that commands taking string
arguments now contact the SunView selection service to get the currently selected string,
wherever it is on the screen.

A secondary problem arises, though. Often the desired argument string is not visi-
ble anywhere on the screen, and the user must type it in. Since BiblioText is a read-only
browser, it contains no place where the user can type. It is unrealistic to expect the user
to type into some other program’s window, just so that text can be selected as an argu-
ment for BiblioText, so some explicit provisions must be made. The SunView text editor
provides a one-line scratch space for just this purpose.

The problem with this general postfix approach, even if a scratch space were pro-
vided, is that users in our environment do not use the SunView editor or anything like it.
A new user here, faced with such a program, would have no idea how to begin.

12 A SunView mechanism for doing so has since appeared, but it is a bit obscure and less general than other interwindow operations.

- 36 -

Designing BiblioText 5. Redesign

The solution finally adopted for the new interface is an experimental hybrid. Com-
mands will operate postfix; those that take string arguments will use the current textual
selection, wherever it is on the screen. If there is no selection, they they will display a
prompter as they do now.

This hybrid approach meets the stated goals, and provides a crutch for people who
are exploring and don’t know what to do. However, the dual prefix/postfix mode of some
commands presents potential confusion of its own. Only experience can evaluate the
cost of this confusion.

An Accelerator

SUGGESTION: Invoke the command view NOTES by buttoning the display of
[notes] in the viewer, rather than by main menu selection. Decision: Reject.

This suggestion is completely outside the model currently supported by BiblioText
and SunView. The left and middle mouse buttons are only for selection, and the right
button is only for command invocation from menus. The only exceptions are accelerators
on panel items and frames, where a left or middle buttons can identify both argument and
operation simultaneously, and scrollbars. Adding this behavior to the SunView text
subwindow, which now supports the viewer, would require wholesale rework of the
operational model and would demand a substantial amount of additional programming.

Clean up Main Menu

SUGGESTION: Rationalize the main menu to make it easier to locate desired
operations. Decision: Use submenus.

The main menu in the old interface is a jumble of mixed commands. One command
has already been removed, Set Working Dir., as described earlier. Possible solutions for
the rest include panel buttons, standard keyboard function keys, and submenus.

Many programs, SunView and otherwise, use panel button items for invoking com-
mands (with a left button press). This technique has two costs. The first cost is visual,
since too many buttons clutter the panel and create a different version of the same prob-
lem (early releases of the SunView DefaultsEditor had this weakness). The second cost
is conceptual, since it violates the following (until now implicit) principle: operations
that affect the general state of the browser are located in the panel (or frame); operations
that affect (or use) the current collection are located in the viewer, directly over the
display of the collection.

A second approach is to integrate more closely with the SunView editing model.
This requires treating BiblioText as an instance of an editor, a shift in view already under
consideration for other reasons (section 5.4 ‘“The Editing Model’’). BiblioText can then
mimic the SunView editor and use the SunView Standard function keys for those opera-
tions that are edits (including, among others L10=DELETE, L8=GET, and L4=UNDOQO).
The disadvantage is that no user in this environment has ever been known to use the Sun-
View editor; the L keys are not labeled on many machines here, and most people do not
understand their functions.

This leaves the submenu approach, the one adopted for the new interface. Given
the discussion of BiblioText as editor, it is natural to create a submenu labeled edit=>,

-37 -

Designing BiblioText 5. Redesign

where the => is the SunView method for flagging the titles of submenus. Load from File
and Store to File likewise migrate into a submenu labeled File=>. Finally, View [notes],
View Raw Refs., and View bib Definitions move into a submenu labeled More Info.=>.
The standard SunView text subwindow menu is, as before, a submenu labeled textsw=>,

5.3. The Viewer

Two suggestions arose concerning the formatted display in BiblioText’s viewer.

Generalize Formatted Elision of Fields

SUGGESTION: Display [W] <locn.> when Verbose Mode, is on, analogous to
the handling of [X]. Decision: Accept and generalize.

SUGGESTION: Generalize the method for formatting raw refs. When
Verbose Mode is off, attempt to display some representation of everything
present, elided in many cases. When Verbose Mode is on, display as much
more as possible, consistent with the goal of convenient browsing. Decision:
Accept.

The fields %W, %X, and %Z are all formatted differently in the old interface, each a
special case. Other defined fields, such as %K, are not formatted at all. In the new inter-
face, this is generalized in several ways.

e First, all other defined fields are included in the formatting in some way; this involved
the addition of %K and %S, and might involve more later.

e The elided forms (when the display is not in Verbose Mode) are of the form [%W]
instead of [W] (in the old interface) to more accurately suggest their meaning.

e The contents of most fields are displayed when the display is in Verbose Mode, for
example [%W]= <locn.>. This applied to all fields except %Z (see below) and %K,
since keywords are often long and of little interest. This latter decision regarding %K
fields is not necessarily well founded, so it may change.

e The %Z field is still treated specially; it appears as [notes] in either display mode.
This field is not part of the standard bib format, and its literal contents (file name of
external notes) are almost never interesting, since those notes can be quickly displayed
with a BiblioText command.

Fine Grained Control of Viewer Modes

SUGGESTION: Allow Verbose Mode to be set independently for each ref.
Decision: Reject.

The user could be given control over Verbose Mode on a ref. by ref. basis; this
would require some command to expand or unexpand the currently selected refs. The
drawback would be the increase in the internal state of the viewer, since each ref. could
be in one of two modes. Additional formatting clues would be required to identify the
mode of each ref., since for some it would not be obvious. More commands would be
required to manage this state (for example to set all refs. to Terse Mode, set all refs. to
Verbose Mode, in addition to the others). The benefit does not seem to justify the added
complexity. :

-38 -

Designing BiblioText 5. Redesign

Refwise Selection

SUGGESTION: Alter the feedback response to selection so that highlighting
occurs only at the granularity of refs. Decision: Reject.

The problem is one of articulatory distance, bridging Norman’s ‘‘gulf of evalua-
tion’’. The user selects characters, the viewer highlights the selected characters, but the
Current Refs. Selection must be inferred by a simple rule. The obvious solution is to
immediately highlight an entire ref. when any character in its display is selected. This
solution fails for two reasons.

First, this solution clashes with the improvement to interoperability that now allows
SunView selections as arguments for keyword and file operations. These operations take
character string arguments that might be parts of the formatted display of some ref.; for
example, a word contained in a formatted ref. might be the keyword desired for the next
index search. Changing the granularity of selection to the refs. would render the other
form of argument selection difficult, unless even more complex machinery were added.

One can conceive of solutions in the SunView tradition, but none of them would be
easily learned; for example, one could select refs. by holding down the shift key while
buttoning. Furthermore, these solutions would be difficult to implement on top of the
standard SunView text subwindow.

This remains an unsolved problem, a clear weakness in the interface.

5.4. The Editing Model

The most far reaching suggestions concern the basic operating model of BiblioText.

Cut/paste editing

SUGGESTION: Complete basic editing functionality to allow arbitrary rear-
rangement of the collection. Decision: Postpone.

As the analysis made clear, BiblioText already supports a subset of basic editing
functionality on the current collection. It might be helpful to complete that functionality,
and it might become more understandable in the process.

Since a list is a simple editing domain, it seems reasonable to design a simple editor
for lists. Many of the simplest editors use cur-paste model; this one would work simi-
larly, but at a coarser granularity than text editors. It would require some addition to
BiblioText’s functionality: replace delete with cut (to clipboard), add paste (from clip-
board), and add, just for good measure, an additional More Info. command called View
Clipboard.

I designed these changes and sketched out the semantics of these new commands.
Only small issues arose during this design:

e a paste should empty the clipboard;

e paste should insert ahead of the first ref. in the current selection, and should append if
there is no selection; and

e the contents of the clipboard should persist across all editing operations, including
Delete All.

-39 -

Designing BiblioText 5. Redesign

The similarity of the SunView global selection model (there is something called the
shelf that is like a clipboard) suggests closer integration. For several reasons, however,
this is not practical: the semantics of SunView editing might clash because of the change
in granularity; no local users understand the full SunView global selection model; and 1
don’t understand the full SunView global selection model.

Time constraints prevent the implementation of this suggestion.

Undo Editing Changes

SUGGESTION: Make all operations on the collection reversible. Decision:
Postpone.

This is an excellent idea, one that becomes more important when the general editing
model is accepted.

I designed an Undo command based on the following simplifying assumptions:

e Undo only those operations that change the contents of the collection; viewing
changes (scrolling, changing modes) are transparent;

e Undo can only unwind one previous operation; and
e Undo, since it changes the contents of the collections, is itself undoable

Thus, two Undo operations in succession will cancel one another (behavior familiar to
users of vi [Joy79]). Although the internal implementation has some interesting twists (a
second, invisible clipboard, and a couple of new, invisible, operations must be added), it
is relatively straightforward.

More interesting is the presentation of this function to the user. This implementa-
tion could be explained to the user at the same level of abstraction as the existing editing
operations, using concepts like clipboard, cut, and paste. This would be like Young’s
register model of the stack machine [You81]. But I imagine most users would be much
more satisfied with a model more like Young’s model of the algebraic calculator, namely
a simple statement: ‘‘reverse the action of the last change to the collection.’’

One final interesting piece of semantics arose during this deliberation. In the con-
ceptual model the Sort command appeared a bit ambiguous; it could either be viewed as
an edit or a viewing mode, depending on how one defined the collection (section 3.5
““Thoughts on Model Building’’). Once an Undo operation is available, however, the
choice becomes clear. I designed semantics for Sort and Undo based on both assump-
tions. If Sort is considered an editing operation, the semantics of Undo are natural, just
what a user would expect. If, on the other hand, Sort is considered a viewing operation,
then it must be transparent to Undo; one should be able to undo an operation performed
before an intervening Sort. In this case, however, the necessary semantics are unintelli-
gible. So, even though SortOrder still appears on the panel, with the other modes, it logi-
cally must be an edit operation.

Time constraints prevent the implementation of the Undo mechanism.

5.5. Other Design Issues

Two final suggestions fell into none of the above categories.

- 40 -

Designing BiblioText 5. Redesign

Output Formats

SUGGESTION: Create and support some specialized storage format(s) that
can be read, maintained, and stored directly by BiblioText; make the storage
external to the bib database so no indexes are affected, and refer to documents
in the database with imprecise citations. Decision: Reject.

This seems attractive, but I have been unable to imagine a format that would be of
general use and would not be bound to one user’s personal way of working.

Multiple Auxiliary Frames

SUGGESTION: Allow multiple files of external notes to be viewed/edited
simultaneously. Decision: Reject.

Unfortunately, this suggestion cannot be supported. SunView software restricts the
number of screen objects in a single process, and multi-process programs in the UNIX
environment present formidable technical problems that would cripple any such design.

5.6. Thoughts on Design Complexity

This phase of the experiment began with a set of suggestions for change to the old
interface. Every suggestion appeared clear and promising in its original context, an
evaluation from some point of view. In the context of the whole design, however,
surprisingly few were clear, and almost none could be adopted in isolation from the the
other suggestions and from the original, high level goals of the program.

Complex interdependency among the issues arose locally, among various design
decisions for the program itself, and contextually, between design decisions and external
aspects of the program’s construction and use. Once again, the problem of context con-
founds everything; nearly every suggestion required some consideration of the contextual
influences listed earlier (section 4.6 ‘‘Thoughts on Theoretical Evaluations’”). Most of
the decisions result from compromise of some kind; in some cases no workable
compromise seemed possible at all.

6. An Empirical Evaluation

This section begins the third phase of the experiment, an evaluation of BiblioText’s
redesigned user interface and of the process that led to it. This evaluation is based on
version 3.4, referred to as the new interface; figures 5.1 and 5.2 in the previous section
show the new interface in operation.

This phase begins with an informal, empirical evaluation of the new interface based
on sessions with new users. Two colleagues, whom I'll call Samuel and Alan, each
agreed to spend an hour or two learning to use BiblioText and making comments. Both
subjects had extensive experience with UNIX, the Sun workstations, and bib, but no pre-
vious exposure to BiblioText.

The first two parts of this section introduce the study and its participants. The next
five parts discuss the results of the sessions, each part treating a group of related issues:
personal working contexts, interaction with the window system, BiblioText’s viewer,
basic functionality, and general reactions. A final part reports general observations from

-41 -

Designing BiblioText 6. An Empirical Evaluation

the evaluation.

6.1. The Study

The setup for the study included:
e a generally accessible, installed version of the program;

e a man page for BiblioText, five pages of online summary documentation in the style
to which UNIX users are accustomed;

e typeset copies of the documentation;

e two chairs at a Sun-3/75 workstation in an office where there would be few distur-
bances; and

e a tape recorder.
The subjects made no particular preparations for the sessions.

After each subject had arrived and logged onto the workstation, I helped set up an
appropriate working environment. This environment consisted of two contextual layers:
internal BiblioText configuration and a general working arrangement on the screen.

Internal BiblioText configuration provides access to the subject’s own collection of
bib data files, indexes, and personal macro (abbreviation) definitions. Configuration data
reside in the SunView defaults database, accessible via the interactive program
DefaultsEditor. Unfortunately, BiblioText cannot read this data interactively, so some
encounter with DefaultsEditor is prerequisite to any first use. I assisted both subjects
with this prelude, since both were unfamiliar with BiblioText and only slightly familiar
with the DefaultsEditor. Neither subject cared to read the documentation in advance,
although this would have helped them with this step.

I then made suggestions for a working context: start BiblioText, start an editor of
some sort, and prepare to edit a typical document that involves bib citations. Samuel
used emacs and Alan used vi.

During the remainder of the session, I allowed the subjects to experiment with
BiblioText as they chose. I answered questions, offered explanations when they were
obviously confused, and prompted comments as they worked. Later in each session, I
steered each subject toward parts of BiblioText’s functionality that they hadn’t yet
explored.

6.2. The Subjects

Other than willingness, Samuel and Alan were chosen as subjects because they are
heavy users of both the Sun workstations and bib software. Both have personal, growing
collections of indexed references; Samuel is currently writing a dissertation and Alan is
writing a Qualifying Paper.

Samuel

Samuel has been collecting and using bib data for a long time; he began years
before there were any workstations. He has overlaid incredibly complex functionality
onto bib. He uses it as a database at several levels; most interestingly he has built a facil-
ity for automatically generating forward and backward references to sections, figures,

-40 -

Designing BiblioText 6. An Empirical Evaluation

and tables in a roff document (he has programs that build a small bib database for each
chapter).

He organizes his bibliographic data and related notes much differently than the stan-
dard, with multiple indexes and makefiles [Fel79] that automatically pass data through
four or more stages of processing. In particular, he has built extra machinery to guard
against imprecise citations losing their uniqueness as his collection grows.

Samuel ceased using SunView software six months earlier; he now uses the X win-
dow system [Get86] on the Sun workstations. He commented at the beginning of the
hour that he has forgotten most of the details about using SunView. This turned out to be
true at both the conscious and motor learning levels.

Alan

Alan has been a heavy user of the workstation for some time; he still uses SunView
at least part of the time. He doesn’t consider himself a student of its advanced features,
though.

He has recently started using and collecting bib data. He is preparing a Qualifying
Paper and is beginning to use the bib programs for managing his own library and
research notes.

6.3. Personal Working Contexts

This part of the section begins the report on the sessions, based on written notes and
tape recordings. The set of issues here appeared almost immediately, before the subjects
had much exposure at all to BiblioText. These issues concern variations in personal
working contexts between the two of them (and between them and myself). These turn
out to have significant effects on their experiences with BiblioText.

Personal Databases

Variations became clear immediately as I helped each subject set up configuration
information beforehand.

Samuel has bib refs. scattered among several locations, maintained by a complex of
makefiles, sed and awk scripts, and custom batch programs. He creates each new raw ref.
in a separate file along with associated notes, and has the collection of refs. built
automatically for indexing. He maintains several indexes, based on different definitions
of keywords; only one or two of them appeared suitable for browsing with BiblioText.
Because of this arrangement, he has no internal notes (no %X fields).

Samuel uses %X fields for location information. He groups refs. into files according
to subject and to whether he owns a copy or not.

Alan maintains only one file of raw refs., but he already finds it unwieldy. He keeps
two copies of the raw file, one for editing and one that is currently indexed; this allows
him to modify the file while using lookup concurrently.

When Alan copies his working version of the refs. to the final version for indexing,
he passes the file through a batch program that inserts extra location information based
on table lookup about journals in his library; this gives him current information about
whether any given article is in his journal library. He uses the %Z field for locations

-43 -

Designing BiblioText 6. An Empirical Evaluation

(which he selected randomly, since it is not defined in the bib standard); of course, this
clashes with usage in BiblioText. Furthermore, he inserts multiple copies of this field;
BiblioText was designed with the assumption that there would never be more than one,
so only the last one in each raw ref. gets formatted.

Editors

Samuel uses emacs and Alan uses vi. The variation can cause problems when doing
interwindow copies of text. For example, vi has separate command and insertion modes;
in the former mode it reacts badly to a sudden stream of characters from the selection ser-
vice.

Learning & Exploration

Neither wanted to read the printed documentation, either in advance or during the
sessions. Both wanted to experiment and allow me to offer explanation on the fly. Both
were happy to explore the menus to see what was available.

6.4. SunView Standards and Tools

Both subjects frequently became confused and needed help. Most instances con-
cerned low level interactions with the window system and interface artifacts in
BiblioText. Both commented frequently on the difficulty they have using the SunView
system, and repeatedly criticized it on small points. This section summarizes their points
of confusion and their complaints.

Frame Operations and Accelerators

Neither subject was familiar with keyboard accelerators for standard window opera-
tions; for example control-middle-button starts a window resize, an operation that other-
wise requires a menu invocation.

Samuel in particular, not having used SunView for some time, had to be reminded
frequently which button to use for menus, how to close and open windows, and the like.
There was also some initial confusion about the assignment of keyboard focus. All are
handled differently in the X window system. X is based on a somewhat different under-
lying model, so the problem is deeper than simple reassignment of commands.

At one point, Samuel tried to get the viewer’s scrollbar to work, but he couldn’t
remember how to use the small buttons appearing at either end of the scrollbar. 1
couldn’t help, because I can’t remember how to use them either.

SunView Selection Service

Neither subject understood the SunView global selection service. Neither was
aware that this service involves several levels of selection (BiblioText only uses the pri-
mary selection). Neither knew how to use keyboard accelerators for copying. Alan
knew how to use a small subset that involves the primary selection and the Stuff opera-
tion. Stuff is a special copying operation that works only among TTY emulator win-
dows; it is present in the 3.2 release of SunView for backward compatibility with earlier
releases, but it is not part of the current global selection service.

_44 -

Designing BiblioText 6. An Empinical Evaluation

This lack of expertise was not a problem for argument selection to operations like
keyword lookup, but it did present problems when the subjects tried to copy newly
created citations into their document editor windows. This problem will be described in
a bit more detail below.

Samuel had trouble with selection, even after I explained it, since the X model is
somewhat different.

Unintended Selection

Both subjects had trouble with unintended primary selections that persisted. This
interacted badly with the new hybrid model for commands that take string arguments. At
one point Alan wanted to perform a keyword lookup with new keywords. He initiated
the command, but no prompter appeared; instead, the command ran and failed to find
anything. Alan had no idea what had happened. There was an active primary selection
elsewhere on the screen, and the lookup operation had used that string as its argument
string; none of BiblioText’s visual feedback, however, helped identify what had hap-
pened.

There seems to be a three-way clash in models for argument specification: postfix
command with selection (SunView model), popup prompters (prefix model), and the
retention of the last string used for a default (still in place from the original design, the
default appears in the prompter). This is greatly exacerbated by the primary global selec-
tion, which can be created unobtrusively during interactions with other window, even
interactions that involve no selections.

Prompter Input

Samuel complained repeatedly about local editing conventions in popup prompters.
Control-U erases the whole line in the prompter, but he is familiar with a different con-
vention in X. He types quickly and made this mistake repeatedly.

Panel Item Menus & Accelerators

Both used mouse buttons to explore panel item behavior. Both began with the left
button. Only the Sort item responds to a left button, but when the collection is empty it
does nothing; thus, they found the panel apparently unresponsive.

Later however, both at various times accidentally hit Sort with the left button and
invoked ‘‘accelerator’’ behavior, namely to advance the current selection to the next one
in the list. The result was a visible sort operation (according to the message field) but no
feedback from the panel item itself. Both were confused by this.

Alan persistently forgot to use the right button on panel items. I finally asked about
this, since right button menus are the SunView standard. He commented that the right
button seems natural for menus outside the windows or in the text viewer, but he just
couldn’t remember it in the panel. After some discussion, we realized that he uses the
gremlin drawing program much more than any other SunView program; contrary to Sun-
View standards (it predates them) the gremlin control panel requires left button to initiate
actions, right button to print additional help information.

- 45 -

Designing BiblioText 6. An Empirical Evaluation

Samuel criticized the toggling behavior of panel menus every time he needed to use
them. In particular, they only allow one action (the toggling of one selection) per menu
invocation. This makes it time consuming to effect multiple changes to the set of active
indexes. Samuel experimented with likely accelerators that didn’t work; for example he
tried a left button selection while keeping the menu displayed by holding down the right
button.

Panel Text Item & Selections

Both subjects, especially Samuel, became confused when trying to select newly
created citations in the panel. The item is displayed in a ‘‘panel text item’’ which sup-
ports selection with curious, partial semantics. For example, the item can sometimes be
highlighted and not be the primary selection, and, unlike other text in SunView, it gets
selected in its entirety with only one left button press. Samuel wried to type into the item
at one point (without luck), since there seemed to be no reason not to; at the time he was
trying to type in keywords to select as arguments to a lookup command.

Samuel finally commented that there should be a text scratch pad for use with this
postfix command arrangement.

Textsw Functions

Both subjects had occasion to explore the functionality of the viewer text subwin-
dow. Samuel found Split on the textsw=> submenu, and split the viewer into two parts
for an imaginary (but plausible) task he wanted to perform. He then added some new
refs. to the collection and found that both views had been repositioned to the first new
ref., not what he wanted or needed. I hadn’t taken this possibility into account, because I
knew that the SunView split operation had potentially fatal flaws in the current release.

Alan also explored the textsw=> submenu and asked several questions about it. He
was completely unfamiliar with it.

Both had occasions for textual search through the viewer, but didn’t know how to
do it. I suggested the use of Find in the textsw=> submenu, but neither was able guess
how to make it work. I walked both of them through it several times. Samuel wondered
why he couldn’t just type control-S over the viewer, ‘‘like in EMACS.”’

Even the scrollbars were troublesome. Alan complained that the bubble does not
get repainted until the cursor moves into it; this can be misleading when the viewer is
repositioned under program control. None of the three of us know how to use the buttons
appearing at the ends of the scroll bar. I have studied the model several times, but I find
it difficult to remember.

Auxiliary Frames

Alan had previewed a text file with citations, and was reviewing his error messages
in an auxiliary frame. He needed to look at some raw refs. to fix one of them, but lost his
error messages when the raw refs. display took over the auxiliary frame. Because of
unfortunate SunView implementation restrictions (file descriptors), BiblioText creates
only one auxiliary frame that is shared among various requests for additional informa-
tion. :

_46 -

Designing BiblioText 6. An Empirical Evaluation

Alan wondered how to retrieve his list of errors; I suggested that he repeat the file
loading operation to recompute the error messages.

6.5. The Viewer

Formatting

The exact details of the formatted display were the subject of some discussion.
Both were comfortable with the elided fields, but Samuel had comments about the tech-
niques for their expansion; he didn’t find the present arrangement obvious.

Both were interested in seeing %K fields expanded when in Verbose Mode but
agreed that it made no sense to expand [notes], since the file name would offer no new
information.

Samuel wanted to expand individual refs. into verbose mode. He also asked about
expanding individual fields, perhaps into a separate window. He wanted to point and
button objects that would respond by expanding.

Selection

Samuel encountered a subtle problem with selection. He tried to select an entire ref.
(not realizing that a single character in it would suffice) and managed to include the sin-
gle character on the blank line that separated the ref. from its predecessor in the collec-
tion. BiblioText interpreted this character selection as overlapping into the previous ref.;
when Samuel requested a citation, he was presented with one for the ref. just before the
one he thought he had selected.

Samuel became accustomed to the global primary selection for string arguments,
but then was confused by commands that operate on refs. He selected text elsewhere on
the screen and tried to request a citation. The error message no current selection
appeared in BiblioText, but he was confused since there clearly was a selection; there
was a global SunView selection but no ref. selection in BiblioText.

Positioning

Both were at first unaware that BiblioText appends newly acquired refs. to the
current collection; this confusion persisted, apparently because BiblioText in each case
repositions the viewer to the first new ref. added. Alan asked himself out loud about this,
examined BiblioText for clues (the number of refs vs. the number that had been added,
the sequence number on the first ref. showing) and concluded that they are appended.
Samuel appeared to be uncertain about this for some time, until we discussed it.

At one point, Samuel performed a lookup that matched two refs.; neither was new to
his current collection, so they weren’t added. He was surprised that the viewer wasn’t
repositioned to one of the old ones.

6.6. Functionality

The issues in this section concern basic functionality of BiblioText and are less
affected by surface issues. :

- 47 -

Designing BiblioText 6. An Empirical Evaluation

Read-Only

Both subjects were at first unaware that the browser can only read bib data, not
modify it. Samuel temporarily confused citation with reference and tried to create a new
ref. After a short explanation, both were comfortable with the restriction since they
know bib and its limitations.

Additions

As mentioned earlier, both subjects were uncertain about the policy of adding newly
acquired refs. to the current collection. Samuel expected that they would replace the
current collection.

Keyword Lookup

Samuel selected a multiple imprecise citation from his document and inidated a
keyword lookup. This is perfectly legal bib usage and is in the form

[.<keywords>,<keywords>.]

It results in two citations in the finished document. Unfortunately, the BiblioText key-
word lookup function does not respect this convention; it treated the entire string as one
keyword list and failed to find any matches in the indexes. There was no feedback to
suggest why the lookup failed.

Make Citation

Both subjects were sensitive to problems of uniqueness in citations; both wanted to
know ‘‘how unique’’ the newly created citation is. I explained the heuristic BiblioText
uses, and both agreed that it is reasonable for an automatic tool. Samuel observed that he
adds extra keywords just to make sure that later additions his ref. collection don’t create
ambiguity in existing citations.

SORT Function

Neither found much use for the Sort command. I suggested using it several times in
situations where they needed to locate something, but it isn’t always enough. For exam-
ple, the papers by specific author don’t always appear together, unless the author is
always first author.

Alan tried to sort an empty collection and wondered why it didn’t appear to work;
the current sort order is defined to be Unsorted when the collection is empty, so it can’t
be changed.

Edit Functions

Neither subject could imagine wanting to do much editing, since it wasn’t clear
what long term value a collection could have. Consequently, neither felt the need for
Undo, although Samuel asked about it at one point.

- 48 -

Designing BiblioText 6. An Empirical Evaluation

File Loading

I steered both subjects toward loading two different kinds of files (raw refs. and text
with citations). Samuel later tried loading an index file, reasoning that the two possibili-
ties he had already seen might generalize to many; he wasn’t disappointed that it didn’t
work.

Both realized immediately what BiblioText does when loading a text file with cita-
tions, apparently because of the step by step visual feedback of the form

checking line <n> [.<keywords>.]

for each citation processed.

Alan found this document preview extremely helpful, and discovered citation errors
in his current paper. He found the error messages self-explanatory. He was able to
improvise with BiblioText to correct the problems and insert correct citations.

Samuel commented that “‘it did the right thing.”’

Both were a bit uncertain about the detailed semantics of the document preview. I
explained that it attempted to mimic bib, with all its peculiar semantics about what is a
multiple match (an error) and what is not. As experienced bib users, they found this
explanation satisfactory.

Set Working Directory

Samuel encountered faulty behavior trying to reset his working directory; this was
apparently caused by a primary selection on the screen that he did not see. The problem
seemed to be a subtle interaction with the UNIX system interface that I don’t understand.
He was able to try again and correct the problem.

New Tasks

Both subjects suggested new tasks for which they would use BiblioText if it had the
right functionality.

For example, Alan asked ‘‘I’ve found a ref. in your index, how do I ask if it’s also
in mine?’’ I had to help with this one, since it isn’t natural: turn off all indexes except his
own, select a string of text from the ref. that has enough words in 1t to identify it (punc-
tuation and short words get discarded), and perform another keyword lookup.

Samuel also wanted to perform tasks associated with index maintenance. He
wanted to ask if a ref. is in more than one index. The BiblioText policy of eliminating
duplicates in the current collection works at cross purposes here. Newly acquired dupli-
cates leave no record.

Both of these new tasks were a bit beyond the basic model on which BiblioText was
built. Both subjects agreed that the basic BiblioText are desirable for some tasks, but not
for others that they invented.

- 49 -

Designing BiblioText 6. An Empirical Evaluation

Main Menu

Alan found the File=> submenu (containing Store to File, and Load from File) a bit
too cryptic. He asked ‘‘what are we loading and saving?”’

Samuel and, to a lesser extent, Alan were confused by term cut. Samuel didn’t
seem familiar with cut/paste terminology at all. A cut operation resulted in a message
using the word deletion, confounding things even further. I finally explained in emacs
terms, but the concept of the clipboard remained murky.

Prompter

Both wanted to copy text into a prompter from elsewhere, and complained about
prompter behavior (it freezes the display and preempts all input). Samuel wants to start
an operation, move to another context on the screen, and then return.

Samuel complained about the local editing conventions in prompters, since it differs
significantly from those used in X.

View bib Definitions

Neither had trouble understanding the result of a View bib definitions command.
Both commented that it appeared extremely handy (even though it is the operation con-
ceptually farthest away from the basic model).

6.7. General Reaction

Both subjects, despite confusion and repeated criticism of low level interaction
techniques, were impressed by BiblioText. Samuel commented that if he were just start-
ing with his library and database, he would use this tool and organize his data differently.
He has too much time invested now, he’s in the final six months of writing his disserta-
tion, and he doesn’t feel justified in retooling. As things stand now, his data model
differs too much from the standard for BiblioText to help him.

Alan, on the other hand, is just starting. Already during our session he began to
plan a restructuring of his data that would take advantage of the browser. He mentioned
that BiblioText directly addresses at least one problem with which he had been grappling.
He commented the next day that BiblioText had already repaid the time he spent during
our session.

6.8. Thoughts on Usability

All three of us (the two subjects and myself) have superimposed our own func-
tionality onto the suite of bib tools, using it to implement different kinds of databases.
To the extent that our models were similar (or malleable), BiblioText is useful. Other-
wise, it appears to be of little help.

There are incredibly many relevant details outside the conceptual model of
BiblioText; most complaints concerned low level interactions, and to a lesser extent the
personal use of bib formats.

One criterion for a ‘‘feeling of engagement’’ is that ‘‘The interface should be unob-
trusive, not interfering or intruding...”” [HHN86]. The empirical evaluation suggests that

-50 -

'] |

Designing BiblioText . 6. An Empirical Evaluation

BiblioText does not succeed, at least not for the two subjects involved. Nearly half of
their comments concerned minor points of interaction, hardly an unobtrusive interface.

7. The New Interface Reconsidered

This section continues the third phase of the experiment, an evaluation of
BiblioText’s redesigned user interface and of the process that led to it. This evaluation is
based on version 3.4, referred to as the new interface; figures 5.1 and 5.2 in an earlier
section show the new interface in operation.

The third phase began with an informal, an empirical evaluation of the new inter-
face, based on sessions with two new users (section 6 ‘‘An Empirical Evaluation’’). This
section section revisits each group of design decisions made during the second phase of
the experiment (section 5 ‘‘Redesign’’) and judges the success of each in light of the
empirical evaluation.

Some design decisions from the second phase appear, in these judgements, to be
faulty or incomplete. When the discussions below lead to ideas for correcting them,
these appear as suggestions in the same format as those produced during the first phase of
the experiment. Some of these final suggestions eventually found their way into
BiblioText, after the completion of the experiment. Figure 7.1 below shows a much later
version, the one described by BiblioText’s user manual [Van88].

7.1. Cosmetics and Visual Consistency

The decisions in this group were generally successful. Some problems surfaced
where the user is not being given enough information. Other problems, artifacts of Sun-
View support, had been anticipated but didn’t admit to easy solution.

Clearly Successful
The problems addressed by these three decisions never arose during the sessions,
and they provoked no comment from the two subjects.

e Active vs. Nonactive Panel Items. Both subjects were drawn to the first line of the
panel when attempting to find mouse-sensitive items. Neither tried to initiate activity
from the two inactive items (other than one attempt to type into the panel text item
that displays messages).

e Auxiliary Frame Labels. Neither subject had difficulty identifying auxiliary frames
with BiblioText, and there was no confusion about the contents of an auxiliary frame.

e Secondary Frame ‘‘Done’’ Buttons and Menus. Both subjects were able to dismiss
auxiliary frames without hesitation.

More Information Needed

The next decision gives the user more feedback than before, but experience suggests
that yet more 1s needed.

o Signal When Working. First, both subjects became confused by sort operations when
they accidentally triggered the panel item’s left-button ‘‘accelerator’’ behavior; the

-51 -

Designing BibiioText 7. The New Interface Reconsidered

Dir: fusr2/cggs/mlvdy:
@ verbose Display @ show Scurces {Set Indexes) [Quit

M As We May Think, Atlantic Monthly 176,1 (July 1945), 181-188. [%K]
{Memex Ravisited, 1967>

2. D. C. Engelbart,

"4 Conceptual Framework for the Augmentation of Man’s Intellect”, in ¥Yistas
i in Information Handling, Yolume 1, P. D. Howerton and D. C. Weeks (editors),

Spartan Books, Washington, D.C., 1963, 1-29. [¥K] [%¥X]

W3, D.C.Engelbart and V. K. English,
“a Research Center for Augmenting Human Intellect", FJCC, 1968, 395-418. [%K
1 [¥x1
<conceptual framework paper>{notes)

-pi Keyword Lookup
4. J. Raskin, Follow <Link>
“The Hype in Hypertext: A Critique”, Proc. Hypertext ‘87 , Chapel Make Citation
November 13-15, 1887, 325-338. Delete -
) Load from File
Save to File=
More Info. =
textsw »

Figure 7.1
A much later version: main menu visible

message
sorting, please wait...

without them having made a menu selection. Second, several keyword lookup opera-
tions failed when there was an accidental primary selection elsewhere on the screen.
It appeared to the user that the search had started without requesting keywords, and
the resulting messages,

Designing BiblioText . 7. The New Interface Reconsidered

no keywords supplied
or

0 Refs. found,

gave no further clues.

More feedback would help, enough to help the user understand in each case exactly what
operation BiblioText is attempting. This is especially true when a global selection may
be taken as a string argument.

SUGGESTION: Give the user more specific feedback for operations that take
string arguments: for sorting, which sort order is the target

sorting by Author-Date, please wait
and for index searches, which keywords were used

14 Refs. found, 10 new for keywords [.<keywords>.]

SunView Clashes
For two of the design decisions, anticipated clashes with the SunView model did
turn out to be troublesome. No easy solutions are apparent.

e Active Panel Item Consistency. Both subjects tripped over the ‘‘accelerator’’ behavior
of the panel Sort item, accidentally hitting it with a left button press and then not
knowing what had happened.

More feedback will help, as would more familiarity with SunView, but the problem
remains for new users in this environment.

e Current Working Directory. As predicted, neither subject thought to investigate the
frame menu when they wanted to change the cwd.

This only affects new users, and no obvious solution presents itself that doesn’t have
other costs.

7.2. Command Formation

The decisions in this group were clearly helpful, but the issues are far from solved.

o Interoperability and Command Syntax Consistency. Both subjects had immediate use
for making screen selections as string arguments to BiblioText commands, and found
it natural to do so; this change seems to be helpful. On the other hand, there were
several instances of confusion about string arguments.

-53.

Designing BiblioText 7. The New Interface Reconsidered

The possibility of this confusion, which appeared as ‘‘a three-way clash in models for
argument specification’’ (section 6.4 ‘‘SunView Standards and Tools’’), was anticipated
at the time the experimental hybrid model was designed: ‘‘... the dual prefix/postfix mode
of some commands presents potential confusion of its own.”’ (section 5.2 ‘‘Command
Formation’’). Since this does appear to be a problem with users, more work needs to be
done. The earlier design discussion suggested alternatives, but no choice is obviously
best. For example, one alternative presented was:

SUGGESTION: Eliminate popup prompters, add a one line scratch area, and
embrace completely the SunView postfix argument model.

The drawback is that users in this environment are unfamiliar with the model. It might
also be awkward to repeat commands using the same arguments, but it is not clear how
important this for most patterns of use.

o Clean up Main Menu. Both subjects were comfortable with the menu organization in
general; neither expressed confusion about the use of submenus. However, there was
some confusion about what functionality corresponded to the menu items.

The problem wasn’t that the menus are unintelligible; they simply don’t display enough
information to educate new users in some aspects of BiblioText’s functionality (espe-
cially file operations). This is an instance of a familiar tradeoff; expanded menu titles to
help new users would be clutter to experienced users.

7.3. The Viewer

This group of decisions provoked more comment from the subjects than any other,
but fewer errors. This may be because the visual display is the most immediately per-
ceived aspect of the interface. Some comments touched on suggestions that had been
rejected in the redesign, so those suggestions have been resurrected here for further con-
sideration.

More Generality Needed

The following decision was successful, but didn’t go far enough.

o Generalize Formatted Elision of Fields. Both subjects use various fields in different
ways than I do and had occasion to examine the contents of fields that had previously
not been displayed in the viewer. The display of fields, both elided (appearing as
[%W]) and expanded (appearing as [%W)]=<locn.>) was self evident to both subjects;
both made appropriate inferences about the display, without comment. The arbitrary
design decision not to expand %K fields in Verbose Mode was wrong; both subjects
found the irregularity confusing and at times wanted to see the contents of %K fields.
Both agreed that [notes] is an appropriate presentation of %Z fields under the cir-
cumstances. One subject uses multiple %W fields in his data; BiblioText, on the
assumption that there is only one per ref., displayed only the last.

The decision to generalize was correct, but I still imposed too many unwarranted
assumptions that were based on my way of organizing bib data. The variations that
appear in this sample of three users suggest even more generality.

SUGGESTION: Include all possible fields in formatting, including those not
defined in the bib standard (lowercase too). Support multiple instances of all

-54 -

Designing BiblioText 7. The New Interface Reconsidered

fields. Adopt a uniform formatting convention for all ‘‘miscellaneous’’ fields;
for example, when Verbose Mode is off, display only a single field label as
before (appearing as [%W]), and when Verbose Mode is on, display each field
on a separate line, with instances separated by commas (appearing as
[%W]=<locn.>,<locn.>).

Originally Rejected

Both of the two remaining decisions in this group were rejected during the redesign,
but were the subject of some comments by the subjects.

e Fine Grained Control of Viewer Modes. One subject wanted to set Verbose Mode for
an individual ref. in the collection, and later wanted to expand the display of a single
field.

The original suggestion, to allow Verbose Mode to be set independently for each ref.,
was rejected as too costly in complexity, both in implementation and interface. This
experience suggests that the added complexity in the interface might not be so bad, since
one subject, at least, expected the function to be available. The SunView implementation
environment, however, doesn’t adequately support the fluid style of interaction that these
suggestions would demand.

e Refwise Selection. Both subjects were uncertain about the relationship between char-
acter selection in the display and the ref. selection necessary for BiblioText com-
mands. One was surprised when a selected character on a blank line was interpreted
to include the preceding ref.

This kind of difficulty was predicted repeatedly, both by experience and from various
analyses. The suggestion to make viewer selections operate at the granularity of refs.
was rejected for reasons that are still valid, however. It remains, as noted during the
redesign, "a clear weakness in the interface.” (section 5.3 ‘“The Viewer’’).

New Functionality

Finally, one issue arose during the empirical evaluation that fell outside suggestions
considered during the redesign, but which had manifested itself earlier during construc-
tion of the conceptual model.

Both subjects were interested in knowing about refs. added from multiple sources,
typically when discussing ‘‘new tasks’’ such as index maintenance. BiblioText only
records the Ref. Source and Cite Source file names when a ref. is first added to the collec-
tion. If duplicates appear during later acquisitions, any new information is discarded.
This behavior was mentioned earlier among other ‘‘Minor bugs in model’” (section 3.5
‘“Thoughts on Model Building’’), ‘... this doesn’t always have a clear analogue in the
conceptual model.”’ It also turns out that this design isn’t the most useful one.

SUGGESTION: Extend the collection so that each ref. can have any number of
associated Ref. Source and Cite Source file names. Display all in the viewer
when Sources Mode is on. Whenever a ref. is acquired that it is already
present in the collection, add its Ref. Source and Cite Source file names to the
existing ref., if not already there.

-55-

T

Designing BiblioText 7. The New Interface Reconsidered

7.4. The Editing Model

Two significant generalizations of the BiblioText editing model were designed but
not implemented because of time constraints: cut/paste editing, and undo. To suggest
this projected functionality, new commands were added to the reorganized main menu,
plainly marked as unimplemented.

e Cut/paste editing. Neither subject saw much use for generalized editing. One subject
was confused by cut/paste terminology, apparently independently of its implementa-
tion status.

e Undo Editing Changes. Both subjects were familiar with the concept of an Undo
command, and one subject spontaneously asked if it is available in BiblioText. Nei-
ther seemed to need it, because they didn’t attempt much editing.

It seems that expanded editing functionality by itself buys little, and that cut/paste termi-
nology didn’t contribute. Editing would only be important to users if they perceived
some longer term advantage to maintaining a collection. Thus, this aspect of the
redesign interacts strongly another issue (‘‘Output Formats’’), discussed next.

7.5. Other Design Issues

A persistent issue, appearing in several threads of analysis and design discussions,
suggests enhancing functionality so that collections can be annotated and made to persist
in useful ways.

e Qutput Formats. Both subjects asked in what form the collection is written to files;
neither could see much use to keeping them in their current form.

The suggestion to extend output formats was rejected during redesign for lack of good
ideas. Any change will have to be made as part of a general extension to the concept of
what BiblioText can do, such as the ability to directly help with the creation and mainte-
nance of annotated bibliographies. Only then will general editing functionality become
important.

Task analysis led to the following suggestion, but it had to be rejected because of
inadequate SunView support.
e Mulniple Auxiliary Frames. One subject, while correcting citation errors that he had

discovered with a preview, requested some raw ref. data and lost his error list.

This experience suggests that the suggestion is valid. Unfortunately, there is no solution
at this time.

8. Conclusions

This experiment led to insights and conclusions at varying degrees of generality.
This section reviews some of them, beginning with the most specific result, an improved
version of BiblioText. The second part reviews lessons that became apparent during
individual phases of the experiment, and the third draws together general themes that
emerged throughout.

-56-

Designing BiblioText 8. Conclusions

8.1. Improvements

The most concrete result of this experiment is version 3.4 of BiblioText. The new
interface developed during this experiment is clearly superior to version 3.3, the old
interface. These improvements resulted from various principled approaches and other-
wise might not have appeared on BiblioText’s evolutionary trajectory. Furthermore,
additional improvements were left pending at completion of the experiment: some
inspired by the evaluation of the old interface (section 4 ‘‘Theoretical Evaluations’’) but
deferred for lack of time, and others prompted by the evaluation of the new interface
(section 7 ‘‘The New Interface Reconsidered’”). Some of these additional suggestions
eventually found their way into BiblioText, version 4.0, current at the time of this report
[Van88].

Almost as important is the small user community that appeared as a side effect of
the empirical evaluation. BiblioText was installed locally, acquired a UNIX style man
page (derived from the conceptual model developed during the experiment), and began to
attract further constructive comment.

8.2. Lessons

This experiment explored several approaches to the design of user interfaces. The
summary here recapitulates the three experimental phases, describing some of the
insights, or lessons learned at each step. It would be more accurate to describe these as
lessons relearned, since most are not particularly new in the abstract. However, their
appearance in the context of work on a real system of moderate complexity demonstrates
the difficulty of bringing theory into practical use.

Phase I: Evaluate the Old Interface

In the first phase of the experiment, I evaluated BiblioText as it existed at the begin-
ning of the project (version 3.3). The evaluation proceeded in two parts: a set of low-
level descriptions (section 3 ‘‘Descriptive Models’’) and a series of more abstract ana-
lyses of the interface (section 4 ‘‘Theoretical Evaluations’’). The latter analyses attempt
to follow advice implicit in selected writings in the research literature on human com-
puter interaction. Theoretical points of view considered in this phase include task-based
design, conceptual models, metaphor, and direct manipulation.

Lesson 1. Complete functional specification of a real mouse and window based pro-
gram is impractical, perhaps impossible.

I failed to complete an attempted functional specification. One problem was the
profusion of detail, resulting from the many contexts in which BiblioText is situated:
mouse and screen object behavior (from the SunView toolkit); interaction with other
window programs (via the SunView selection service); the semantics of indexing and
citation (from bib data and programs); operating system behavior such as file naming
conventions (from UNIX), and others. Attempts to simplify by separating functionality
and interface also failed; the distinction is blurry and not well-defined for this kind of
program.

Had I completed the specification, its volume would render it unintelligible. And
even if it could be made intelligible, it would fail to capture the attributes most obvious

-57-

Designing BiblioText 8. Conclusions

to a user: style, attractiveness, and feel for example. In the end, I retreated to a few par-
tial descriptions that contained just enough detail for the tasks at hand.

Lesson 2. Conceptual models can be helpful, both for the designer and for explanation,
but they do not necessarily exist a priori for working, useful programs.

It was surprisingly difficult to articulate a coherent conceptual (surrogate or struc-
tural) model for BiblioText, especially since I had assumed the implicit existence of such
a model. After all, I understood the program, and coherency and simplicity had been
design goals all along. But the model demanded that I invent concepts outside my prior
view of the program, and the final result still didn’t match the program completely.

On the other hand, constructing this model predicted (correctly) some areas of
potential confusion. The model also helped organize documentation for users, and it
later served as helpful guide when I evaluated various suggested changes to the interface.

Lesson 3. The research literature on user interface design is only marginally relevant
to practical, mouse and window based programs.

In every case, contextual realities confounded the utility of principles. The concep-
tual model mentioned above was helpful, but necessary restrictions on the program made
exact fit between program and a clean model impossible. Most discussions of metaphor
concentrate on naive metaphors, how computational objects are like non-computational
objects. But users in this environment are not naive, and they are more likely to consider
a new system in light of other computational systems than to non-computational objects.
They also bring concepts, skills, and prejudices, developed through experience with other
computational objects. Direct manipulation interfaces promise some advantages, but in
at least one area, BiblioText is useful precisely because it does not work by direct mani-
pulation. Finally, it is difficult to know what consistency means when applying these
techniques; in may cases the answer depended on assumptions about the context in which
the program would be used. Several of the themes in the next part of this section return
to this problem.

On the other hand, adopting these different perspectives did help remove some
(though not all) of my prejudices about the old design, and it inspired suggestions for
improvement, many of which turned out to be effective. On the more theoretical side, it
confirmed the need to consider distributed models [diS86] for explaining complex sys-
tems where simple explanations fail.

Phase II: Design the New Interface

In the second phase of the experiment, I collected the suggestions that originated in
the first phase, organized them into groups of related issues, and responded with changes
to the design of BiblioText’s interface (section 5 ‘‘Redesign’’). A few changes were
easy to design and implement, but in most cases complications appeared from remark-
ably diverse sources. Many decisions demanded tradeoffs for which no answer appeared
obviously better.

Lesson 4. Good ideas and suggestions often work at cross purposes.

There were cases where suggestions motivated by different points of view contrad-
icted one another. The tradeoffs required judgement on apparently unrelated issues,
especially certain aspects of the context in which the program would be used (see below).

-58 -

Designing BiblioText 8. Conclusions

The general themes of multiple points of view and problems with consistency appear
again in the next part of this section.

Lesson 5. Design decisions depend on assumptions about context of use.

Some suggestions were sensible in isolation, but conflicted with BiblioText’s higher
level goals, or with contextual influences (notably UNIX). Other suggestions were per-
fectly sensible and coherent from the perspective of the program and its users, but
required support not available in SunView. Some of the tradeoffs required policy deci-
sions on issues I had not previously considered: presumed user skills, learnability vs.
convenience, preferred organizations for bib data, and others.

Lesson 6. Everything is related.

Even my attempt to categorize suggestions by issue failed. Later experience
demonstrated that suggested improvements in one group (editing functionality) were
irrelevant to users and would remain so until certain issues in another group (storage for-
mats for the collection) could be resolved.

Phase III: Evaluate the New Interface

In the third phase of the experiment, I collected informal feedback from two new
users (section 6 ‘‘An Empirical Evaluation’’) and reviewed the success of the design
changes I had made. (section 7 ‘“The New Interface Reconsidered’’).

Lesson 7. Ultility is strongly driven by working context.

The experimental subjects were the first users of BiblioText other than myself. I was
startled by the divergence of our three working contexts, given the similarity of our situa-
tions. Fit between tool and context seemed to dominate perceived benefit from the pro-
gram. One of the subjects will continue to use BiblioText and the other will not; the
quality of the interface and even details of functionality were not major factors in their
decisions.

Lesson 8. Low level details dominate.

Most of the subjects’ immediate difficulty concerned points of interaction, in partic-
ular dealing with the interactive behavior of SunView screen objects. I had to conclude
that (at least for new users like these two) low level details of interaction dominate issues
of functionality, and that by the criterion of unobtrusiveness, BiblioText’s user interface
is still deficient.

Lesson 9. It is easier to evaluate learnability than utility.

It is difficult to judge the relevance of these results to the goal of making BiblioText
productive and convenient. Like so many studies in the literature, the results of the
empirical evaluation are biased toward the view of new users. For example, a regular
user of the program would eventually cease to be surprised by the behavior of buttons,
menus, the like. Some of the subjects’ problems resulted from incomplete understanding
of the program’s functionality, but were easily resolved with a short explanation, for
example by appealing to advanced knowledge of bib. Even though the particular func-
tionality is idiosyncratic, it would cease to be a problem to these users.

-59 .

Designing BiblioText 8. Conclusions

8.3. Themes

More general issues emerged throughout the experiment; the following comments
discuss some of these recurring themes.

Specialization vs. Generality

Two common themes in the literature on user interface design are (a) clean struc-
tural models, directly presented to the user, and (b) simple mappings between those
models and the user’s task domain (the work to be done). In practice, these can work at
cross purposes and can be confounded by other issues.

An instance of the conflict is the tension in any design between specialization and
generality. One path to simple design is context independence and thus more general
applicability. For example a simple text editor with few commands is equally useful to
many people. Direct manipulation interfaces strive for this kind of simplicity. But in the
attempt to simplify the mapping between a program’s structure and a user’s (presumably)
rich task domain, the designer often adds special functionality to match intended pat-
terns; this kind of functionality is inherently context dependent. Often the most useful of
these specialized functions have the least to do with direct manipulation; for example the
“Sort”’ function in BiblioText is one of the easiest to understand, but is one of the least
direct and the most difficult to describe formally.

The situation is even more complex when one addresses the needs of multiple users,
since their tasks presumably vary and (equally as important) so do their ways of thinking
about them. Context dependent specialization reduces utility to users who do not share a
common context.

The delicate balance between specialization and generality was upset in many ways
during this experiment. For example, I unwittingly overspecialized with design decisions
that depended implicitly on the way I organize my bib data. This is the familiar myopia
of the designer; one never really knows how one’s creation will be used.

On the other hand, I overgeneralized with the decision to simplify BiblioText’s
- model by making it more like a cut and paste editor. This change failed because it was
not grounded in any working context; the experimental subjects couldn’t imagine what to
do with it.

Models and Abstractions

My failure to complete a full functional description of BiblioText demonstrates the
very reason we build models. I retreated from an avalanche of detail that threatened to
obscure the information I sought; I narrowed my view of the program, choosing to think
of its functionality without interface. Of course the description I originally started to
write would also be an abstraction; it just turned out to be the wrong one for the job.
Later parts of the experiment required different abstract views of the program.

I was also obliged by the program’s context to adopt particular views that I
wouldn’t have chosen otherwise. For example, building an interactive SunView program
demands that one cast the program, at least partially, into the SunView model.

I adopted yet other points of view for pedagogical reasons, for example *‘this func-
tion mimics the referencing behavior of bib.”’

- 60 -

Designing BiblioText 8. Conclusions

Multiple Points Of View

Models are inherently incomplete, and we try to understand systems by using many
of them. Each model (or description) of BiblioText revealed new aspects of the program,
but only by selectively ignoring others.

It would appear that systems like BiblioText are of necessity built that way, not just
apprehended after the fact. Weinberg’s ‘‘superobserver,’” if such a person could be
found, would apprehend the system in its entirety, from all points of view. But as Wein-
berg himself comments,

Combinatorial growth is a critical flaw in any discussion of multiple points of

view, for though we can imagine that a superobserver might exist in simple

situations, there is little chance of having one in situations of even modest
complexity [Wei75].

A serious problem with multiple views is that the models they produce can never be
completely disjoint (otherwise they would be describing disjoint systems). To a madden-
ing degree, most suggestions for BiblioText’s improvement were motivated in some
points of view but conflicted with suggestions derived from others.

Formal methods

We rely heavily on multiple models (or abstractions) to design, build, and talk about
complex systems; computer programs are no exception. This approach is evident in top-
down design, separation of concerns, layers, dataflow, hierarchical decomposition, infor-
mation hiding, and many more.

There is no free lunch, however, and we often forget the crucial limitation. Any
observed fact about a system, based on a particular point of view, does not describe the
system; it only describes the model of the system produced by that particular point of
view.

This limitation applies to formal specifications of programs. No specification can
be more than a partial description, limited by the language (or point of view) in which it
is expressed. Even more discouraging, any observation, claim, or proof about a program
is only valid for that model of the system implied by the point of view in which it is
made. This observation is fundamental to Smith’s “‘Limits of Correctness’” [Smi85].

Consider, for example, mathematical proofs of programs that assume real arithmetic
(which does not exist in the hardware), termination proofs that ignore interrupts and
crashes (which do exist in most hardware), and attempts to specify the ‘‘style’” of
interactive programs (a real, but relative concept). To paraphrase Weinberg:

Formal specification methods study those systems for which the approxima-
tions of formal specifications work successfully.

The same limitation applies when we replace ‘‘formal specifications’” with ‘‘con-
ceptual models”’. Experience with BiblioText repeatedly demonstrates that details out-
side a particular point of view can frustrate and dominate results obtained from within.
This argues that we interpret the results of research in this area with caution; they yield
insight about real systems only in the sense that the ‘“‘frictionless planes’’ of physics can
help mechanical engineers.

_61 -

Designing BiblioText 8. Conclusions

Consistency is a Relation

Discussions of human-computer interfaces often contain careless reference to con-
sistency, as though it were an attribute that a system can either have or not have (for con-
sistency substitute uniform, friendly, transparent, or your favorite adjective, the point is
the same).

Gregory Bateson would call this fallacy an error of logical type, claiming instead
that these words describe relationships between system and user, and furthermore that
these relationships are dynamic [Bat79]. The research literature in cognitive approaches
to system design acknowledges the problem by postulating cognitive models that exist in
the mind of the beholder, apart from system or designer. It is in the various mappings
that relevant properties emerge.

Experience with BiblioText suggests that we would more profitably view these pro-
perties as three-way relations among observer, object, and view (more specifically: user,
system, and task). Seen this way, it is all but impossible to maintain any absolute sense
of consistency.

The subjects of BiblioText’s empirical evaluation established immediately diver-
gent patterns of use; each built a personal relationship with the system. The patterns dif-
fered from one another and from what I, the designer had envisioned. Furthermore, the
subjects’ qualitative assessments of BiblioText (and its interface) changed from moment
to moment, depending on the topic of conversation, the task at hand, and how much they
had learned about the program so far.

8.4. Final Thoughts

Although many of the conclusions I've drawn from the experiment suggest the
enormous difficulty inherent in applying any of these approaches to real systems, I don’t
believe that these approaches are without value. I would no more argue that they should
be abandoned than I would argue that physics teachers should abandon frictionless planes
or that programming teachers should abandon stepwise refinement.

I believe, however, that we will not see the time when cognitive approaches alone
can guide us to a successful computer system design. Instead, they will increasingly (I
hope) offer the kinds of benefit that they did during this experiment: a richer vocabulary
of interaction, heightened sensitivity to contextual diversity, varied frameworks for ask-
ing questions, and deepened insight into the problems of interface design.

9. Acknowledgements

Robert Ballance supplied helpful suggestions for the original prototype design.
Eduardo Pelegri-Llopart and Dain Samples helped evaluate the user interface of an inter-
mediate version.

Profs. Andy diSessa, Susan Graham, Mike Harrison, Peter Pirolli, and Larry Rowe
all helped create the academic setting in which this research could take place.

oy

Designing BiblioText 10. References

10. References

[Bat79]
[Bro88]

[Bul.82]

[CaT82]

[diS86]

[Fel79]

[Get86]

[Goo87]

[HaM82]

[HMTS87]

[HHNS86]

[Joy79]

[Mal82]

[Nor86]

[Oss76]

G. Bateson, Mind and Nature: A Necessary Unity, Bantam, 1979.

F. P. Brooks, Grasping Reality Through Ilusion — Interactive Graphics
Serving Science, Proceedings SIGCHI Conference on Human Factors in
Computing Systems, Washington, DC, May 1988, 1-11.

T. A. Budd and G. M. Levin, A UNIX Bibliographic Database Facility,
University of Arizona Technical Report 82-1, 1982.

J. M. Carroll and J. C. Thomas, Metaphor and the Cognitive Representation
of Computing Systems, [EEE Transactions on Systems, Man, and
Information Sciences SMC-12, 2 (1982), 107-116.

A. A. diSessa, Models of Computation, in User Centered System Design:
New Perspectives on Human-Computer Interaction, D. A. Norman and S. W.
Draper (editor), Lawrence Erlbaum Associates, Hillsdale, NJ, 1986, 210-
218.

S. I. Feldman, Make — A Program for Maintaining Computer Programs,
Software—Practice & Experience 9, 3 (March 1979), 255-265.

J. Gettys, Problems Implementing Window Systems in UNIX, Proceedings
Winter USENIX Technical Conference, January 1986, 89-97.

D. Goodman, The Complete HyperCard Handbook, Bantam Books, New
York, 1987.

F. Halasz and T. P. Moran, Analogy Considered Harmful, Proceedings of the
Conference on Human Factors in Computing Systems, Geithersburg, MD,
March 1982.

F. G. Halasz, T. P. Moran and R. H. Trigg, NoteCards in a Nutshell,
Proceedings SIGCHI Conference on Human Factors in Computing Systems,
Toronto, Canada, April 1987, 45-52.

E. L. Hutchins, J. D. Hollan and D. A. Norman, Direct Manipulation
Interfaces, in User Centered System Design: New Perspectives on Human-
Computer Interaction, D. A. Norman and S. W. Draper (editor), Lawrence
Erlbaum Associates, Hillsdale, NJ, 1986, 87-124.

W. Joy, An Introduction to Display Editing with Vi, Computer Science
Division, EECS, University of California, Berkeley, March 1979.

T. W. Malone, How Do People Organize Their Desks? Implications for the
Design of Office Information Systems, Proceedings SIGOA Conference on
Office Information Systems, Philadelphia, PA, June 1982, 47-49. (Extended
Abstract).

D. A. Norman, Cognitive Engineering, in User Centered System Design:
New Perspectives on Human-Computer Interaction, D. A. Norman and S. W.
Draper (editor), Lawrence Erlbaum Associates, Hillsdale, NJ, 1986, 31-61.

J. F. Ossanna, NROFFI/TROFF User’'s Manual, Bell Laboratories, Murray
Hill, NJ, 1976.

- 63 -

Designing BiblioText 10. References

[Smi85]

[Sta81]

[S480]
[SSS84]
[SSS86]

[Van88]

[We175]

[You81]

B. C. Smith, Limits of Correctness in Computers, CSLI-85-36, Center for the
Study of Language and Information, Stanford, CA, October 1985. Prepared
for and presented at a Symposium on Unintentional Nuclear War at the Fifth
Congress of the International Physicians for the Prevention of Nuclear War,
Budapest, Hungary, June 28-July 1, 1985..

R. M. Stallman, EMACS: The Extensible, Customizable, Self-Documenting
Display Editor, Proceedings of the ACM-SIGPLAN SIGOA Symposium on
Text Manipulation, Portland, OR, June 1981, 147-156.

V. Stibic, Personal Documentation for Professionals: Means and Methods,
North-Holland, New York, NY, Amsterdam, 1980.

SunWindows Programmer’'s Guide: An Introduction to the Sun Window
System, Sun Microsystems, Inc., Mountain View, CA, 1984. Release 1.1.

SunView Programmer’s Guide, Sun Microsystems, Inc., Mountain View,
CA, October 1986. Revision A (3.2 release).

M. L. Van De Vanter, BiblioText: A Hypertext Browser for Bibliographic
Data and Notes, 88/455, Computer Science Division, EECS, University of
California, Berkeley, October 25, 1988.

G. Weinberg, An Introduction to General Systems Thinking, John Wiley &
Sons, New York, NY, 1975.

R. M. Young, The machine inside the machine: users’ models of pocket
calculators, International Journal of Man-Machine Studies 15 (1981), 51-85.

Designing BiblioText A. Original Task Analysis

Appendix A. Original Task Analysis

BiblioText was originally created as part of an earlier project. The design of the
first prototype was derived from analysis of a particular working domain: professionals,
working singly or in small groups, who need to manage and selectively share personal
information including bibliographic references, on-line documents, personal notes, and
their mutual interconnections.

Analysis of the selected working domain began with a list of tasks that a person
might want to perform, along with a discussion of how to accomplish those tasks in the
absence of any automated tools. This appendix presents that discussion, since it is the
background for part of the experiment described in the body of this report (section 4.2
““Task Analysis’’).

The Task Environment

Ignoring automated aids for the moment, the task environment in which the project
was situated concerns the needs of a small group of people (perhaps only one person)
who maintain (and share) documents, in particular more documents than can
conveniently be kept in view or in mind. The term document in this context refers to
books, articles, reports, and notes, but also possibly to microform, audio and computer
tapes, transparencies, or anything else of sufficient interest to the parties concerned.

This working environment falls between two extremes in size. On one hand, a
person who uses few documents, or who seldom retrieves previously read documents,
need not address issues of management, sharing, indexing, retrieval, and browsing. On
the other hand, general libraries, even of medium size, present problems that are distinct
from those discussed here.

Typical Tasks

This list summarizes the originally proposed tasks, all concerning the maintenance,
augmentation, and perusal of a personal (or shared) information repository. These tasks
are described independently of any automation. The descriptions here note
interrelationships among the tasks with references to other tasks in the list, such as (a).

(a) Notice an interesting document.

One may hope to read the document immediately (b), but it will often be necessary to put
it aside until some later time. The ubiquitous solution is to add it to some ‘‘IN’’ box or
pile where it waits and serves as a visual reminder [Mal82]; this can, of course, create
retrieval problems when a document needs to be in more than one pile at a time, or (when
borrowed) in more than one office (d). Less effectively, a written note can serve as a
reminder and pointer.

(b) Read an interesting document, possibly write notes.

The notes must be put where they can be retrieved. If not stored with the document
itself, the notes must contain some pointer to the document, an informal citation. The
document itself may be put with other, related documents (h) if another use seems
imminent. Otherwise the document is returned (if borrowed) or filed (c).

-65 -

Designing BiblioText A. Original Task Analysis

(c) Acquire an interesting document.

Whether one reads it (b) or does not (a), the document must reside somewhere. One
typically stores documents so that their physical arrangement is of some help for later
retrieval (f). They may be categorized in some useful way, but often the categories have
as much to do with physical characteristics as with their content (one tends not to store
books and article reprints together). Ambitious users may index new acquisitions to
expedite later retrieval. In any case, one must have some hope of locating the new
document in some future context where it might be relevant. Stibic [Sti80] describes
manual techniques by which the individual professional may conveniently categorize and
index documents.

(d) Lend a document.

Since most retrieval schemes are based on location, the owner must somehow record the
loan. The alternatives are wasted time and shrinking libraries.

(e) Locate notes on a specific document.

Retrieval depends on storage and organization. Notes may be in folders or piles
organized by subject; they may be organized according to the context in which the
documents were originally read (such as a class reader or bound tutorial); or they may be
organized in parallel with the documents themselves (stored in folders along with reprints
or stuffed between the pages of books). If the notes reside in computer files. it may be
necessary to produce a printed version.

(f) Locate a specific document.

For small libraries, simple search may suffice. Larger collections, including the libraries
of many professionals, demand additional mechanism. Some documents, such as articles
reprinted in bound volumes, can be particularly difficult to locate manually. Closely
related tasks are to answer the questions ‘‘do I possess some specific document?’” and
‘“‘who has my copy of this document?’’.

(g) Write a document, citing other documents.

The first step is to remember which documents are relevant. It also may be necessary to
locate and review related notes (e¢) and source documents (f), and possibly to copy
excerpts into the new document. Finally, the author adds formal citations to the new
document, based on notes or on the original documents.

(h) Maintain for later retrieval a collection of related documents.

Whether one has read them and whether one possesses them, one often wants a collection
that represents readings on some specific subject, or associated with some particular
project. These tend to grow incrementally and to be reorganized occasionally. The
physical piles described under (a) are common; people seem to respond well to the visual
cue of the pile. Written reading lists can also be used; unfortunately, a reading list is
itself a document and needs some filing/retrieval mechanism. Piles of documents are
hard to lose, though in the extreme they can make life uncomfortable.

(1) Extract a new group of documents according to unanticipared criteria.

Work often creates new contexts that prompt searches for related documents. Memory
suffices up to a point, simply browsing through shelves is effective, asking one’s
colleagues helps, but a cost-effective indexing mechanism (paid for at acquisition (c))
can make these searches much easier. As Stibic argues [Sti80], it is not cost effective for

- 66 -

Designing BiblioText A. Original Task Analysis

the professional to reinvent the elaborate on-line retrieval systems appropriate to
institutional libraries. Personal indexing schemes can be adapted to the particular
interests and needs of its user(s), and can therefore be much more effective. Finally, it
may be important to print a formal or informal list of the results.

(3) Peruse personal notes, either from a maintained collection or following some
unanticipated criteria.

In either case, retrieval depends on their storage and indexing (b and e). Perusal may
consist of thumbing through and rereading, but for more extensive work there seems to
be no substitute for the large table top. Often, that organization itself, the final
arrangement of notes on the table, is an important product of the information search. If
the notes reside in a computer file, it may be necessary to produce a printed version of the
collection.

-67 -

g

